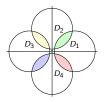
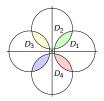


In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in



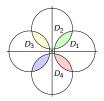
In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in



In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in

the punctured plane $C \setminus \{0\}$ that does not have a harmonic conjugate in all of $C \setminus \{0\}$. How can this happen?

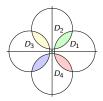
Well, *u* has a harmonic conjugate in disks D_1 and D_2 . They must differ by a constant on the green overlap, so we can adjust the conjugate in D_2 to get a harmonic conjugate in the union $D_1 \cup D_2$. Then we can adjust the harmonic conjugate in D_3 to get a harmonic conjugate in $D_1 \cup D_2 \cup D_3$. But we have a problem when we try to adjust the harmonic conjugate in D_4 . It has to match up in the blue overlap and the red overlap, and we may not be able to do that.



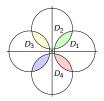
In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in

the punctured plane $\bm{C}\setminus\{0\}$ that does not have a harmonic conjugate in all of $\bm{C}\setminus\{0\}.$ How can this happen?

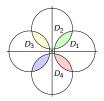
Well, *u* has a harmonic conjugate in disks D_1 and D_2 . They must differ by a constant on the green overlap, so we can adjust the conjugate in D_2 to get a harmonic conjugate in the union $D_1 \cup D_2$. Then we can adjust the harmonic conjugate in D_3 to get a harmonic conjugate in $D_1 \cup D_2 \cup D_3$. But we have a problem when we try to adjust the harmonic conjugate in D_4 . It has to match up in the blue overlap and the red overlap, and we may not be able to do that.



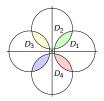
In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in



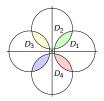
In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in



In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in



In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in



In Section §2.5 problem #20, you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem #21 that we can have a harmonic function u in

Theorem

Suppose that

$$f(z) = \frac{p(z)}{q(z)} = \frac{p(z)}{a(z - w_1)^{d_1}(z - w_2)^{d_2} \cdots (z - w_s)^{d_s}}$$

is a rational function with deg $p(z) < \deg q(z) = d_1 + d_2 + \cdots + d_s$. Then $f(z) = r_1(z) + r_2(z) + \cdots + r_s(z)$ where

$$r_k(z) = rac{A_0^{(k)}}{(z-w_k)^{d_k}} + rac{A_1^{(k)}}{(z-w_k)^{d_k-1}} + \cdots + rac{A_{d_k-1}^{(k)}}{(z-w_k)}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Not so Bad in Practice

Example

The previous result tells us that

$$f(z) = \frac{1}{z(z-1)^3} = \frac{A}{z} + \frac{B}{(z-1)^3} + \frac{C}{(z-1)^2} + \frac{D}{z-1}.$$
We discussed how we easily arrive at

$$\frac{1}{z(z-1)^3} = -\frac{1}{z} + \frac{B}{(z-1)^3} - \frac{1}{(z-1)^2} + \frac{1}{z-1}.$$

You can even memorize Eq (21) in Section 3.1 which gives a general formula for the $A_j^{(k)}$. But I think it easier to figure it our on a case by case basis. In particular, you can compute D in our example as

$$D = \lim_{z \to 1} \frac{1}{2} \frac{d^2}{dz^2} ((z-1)^3 f(z)).$$

<回と < 目と < 目と

Not so Bad in Practice

Example

The previous result tells us that

$$f(z) = \frac{1}{z(z-1)^3} = \frac{A}{z} + \frac{B}{(z-1)^3} + \frac{C}{(z-1)^2} + \frac{D}{z-1}.$$
We discussed how we easily arrive at

$$\frac{1}{z(z-1)^3} = -\frac{1}{z} + \frac{B}{(z-1)^3} - \frac{1}{(z-1)^2} + \frac{1}{z-1}.$$

You can even memorize Eq (21) in Section 3.1 which gives a general formula for the $A_j^{(k)}$. But I think it easier to figure it our on a case by case basis. In particular, you can compute D in our example as

$$D = \lim_{z \to 1} \frac{1}{2} \frac{d^2}{dz^2} ((z-1)^3 f(z)).$$

<回と < 目と < 目)

Theorem

- We have $e^w = 1$ if and only if $w = 2\pi i k$ for some $k \in \mathbb{Z}$.
- 2 We have $e^z = e^w$ if and only if $w = z + 2\pi ik$ for some $k \in \mathbf{Z}$.

Corollary

The complex exponential function $f(z) = e^z$ is periodic with period $2\pi i$. That is, $f(z + 2\pi i) = f(z)$ for all $z \in \mathbf{C}$.

Definition

For all $z \in \mathbf{C}$, we define

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
 and $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$.

Theorem

The functions $f(z) = \cos(z)$ and $g(z) = \sin(z)$ are entire with

$$rac{d}{dz}(\cos(z)) = -\sin(z)$$
 and $rac{d}{dz}(\sin(z)) = \cos(z)$

Further both are periodic with period 2π .