Harmonic Conjugates

In Section $\S 2.5$ problem \#20, you proved that any harmonic function u has local harmonic conjugates.

This just means

that is u is harmonic in a disk, then it has

a harmonic conjugate in that disk. On the other hand, you also showed in problem \#21 that we can have a harmonic function u in

Harmonic Conjugates

In Section §2.5 problem \#20,
 you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk.
other hand, you also showed in problem \#21
that we can have a harmonic function u in
the punctured plane $\mathbf{C} \backslash\{0\}$ that does not have a harmonic conjugate in all of $\mathrm{C} \backslash\{0\}$

Harmonic Conjugates

In Section §2.5 problem \#20,

you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem \#21 that we can have a harmonic function u in the punctured plane $\mathbf{C} \backslash\{0\}$ that does not have a harmonic conjugate in all of $\mathbf{C} \backslash\{0\}$.

Harmonic Conjugates

In Section §2.5 problem \#20,
 you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem \#21 that we can have a harmonic function u in the punctured plane $\mathbf{C} \backslash\{0\}$ that does not have a harmonic conjugate in all of $\mathbf{C} \backslash\{0\}$. How can this happen?

Harmonic Conjugates

In Section §2.5 problem \#20,
 you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem \#21 that we can have a harmonic function u in the punctured plane $\mathbf{C} \backslash\{0\}$ that does not have a harmonic conjugate in all of $\mathbf{C} \backslash\{0\}$. How can this happen?
Well, u has a harmonic conjugate in disks D_{1} and D_{2}. They must

Harmonic Conjugates

In Section §2.5 problem \#20,
 you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem \#21 that we can have a harmonic function u in the punctured plane $\mathbf{C} \backslash\{0\}$ that does not have a harmonic conjugate in all of $\mathbf{C} \backslash\{0\}$. How can this happen?
Well, u has a harmonic conjugate in disks D_{1} and D_{2}. They must differ by a constant on the green overlap, so we can adjust the conjugate in D_{2} to get a harmonic conjugate in the union $D_{1} \cup D_{2}$.
harmonic conjugate in $D_{1} \cup D_{2} \cup D_{3}$.

Harmonic Conjugates

In Section §2.5 problem \#20,
 you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem \#21 that we can have a harmonic function u in the punctured plane $\mathbf{C} \backslash\{0\}$ that does not have a harmonic conjugate in all of $\mathbf{C} \backslash\{0\}$. How can this happen?
Well, u has a harmonic conjugate in disks D_{1} and D_{2}. They must differ by a constant on the green overlap, so we can adjust the conjugate in D_{2} to get a harmonic conjugate in the union $D_{1} \cup D_{2}$. Then we can adjust the harmonic conjugate in D_{3} to get a harmonic conjugate in $D_{1} \cup D_{2} \cup D_{3}$.

Harmonic Conjugates

In Section §2.5 problem \#20,
 you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem \#21 that we can have a harmonic function u in the punctured plane $\mathbf{C} \backslash\{0\}$ that does not have a harmonic conjugate in all of $\mathbf{C} \backslash\{0\}$. How can this happen?
Well, u has a harmonic conjugate in disks D_{1} and D_{2}. They must differ by a constant on the green overlap, so we can adjust the conjugate in D_{2} to get a harmonic conjugate in the union $D_{1} \cup D_{2}$. Then we can adjust the harmonic conjugate in D_{3} to get a harmonic conjugate in $D_{1} \cup D_{2} \cup D_{3}$. But we have a problem when we try to adjust the harmonic conjugate in D_{4}.

[^0]do that.

Harmonic Conjugates

In Section §2.5 problem \#20,
 you proved that any harmonic function u has local harmonic conjugates. This just means that is u is harmonic in a disk, then it has a harmonic conjugate in that disk. On the other hand, you also showed in problem \#21 that we can have a harmonic function u in the punctured plane $\mathbf{C} \backslash\{0\}$ that does not have a harmonic conjugate in all of $\mathbf{C} \backslash\{0\}$. How can this happen?
Well, u has a harmonic conjugate in disks D_{1} and D_{2}. They must differ by a constant on the green overlap, so we can adjust the conjugate in D_{2} to get a harmonic conjugate in the union $D_{1} \cup D_{2}$. Then we can adjust the harmonic conjugate in D_{3} to get a harmonic conjugate in $D_{1} \cup D_{2} \cup D_{3}$. But we have a problem when we try to adjust the harmonic conjugate in D_{4}. It has to match up in the blue overlap and the red overlap, and we may not be able to do that.

Partial Fraction Decompositions over C

Theorem

Suppose that

$$
f(z)=\frac{p(z)}{q(z)}=\frac{p(z)}{a\left(z-w_{1}\right)^{d_{1}}\left(z-w_{2}\right)^{d_{2}} \cdots\left(z-w_{s}\right)^{d_{s}}}
$$

is a rational function with $\operatorname{deg} p(z)<\operatorname{deg} q(z)=d_{1}+d_{2}+\cdots+d_{s}$. Then $f(z)=r_{1}(z)+r_{2}(z)+\cdots+r_{s}(z)$ where

$$
r_{k}(z)=\frac{A_{0}^{(k)}}{\left(z-w_{k}\right)^{d_{k}}}+\frac{A_{1}^{(k)}}{\left(z-w_{k}\right)^{d_{k}-1}}+\cdots+\frac{A_{d_{k}-1}^{(k)}}{\left(z-w_{k}\right)}
$$

Not so Bad in Practice

Example

The previous result tells us that
$f(z)=\frac{1}{z(z-1)^{3}}=\frac{A}{z}+\frac{B}{(z-1)^{3}}+\frac{C}{(z-1)^{2}}+\frac{D}{z-1}$.
We discussed how we easily arrive at

$$
\frac{1}{z(z-1)^{3}}=-\frac{1}{z}+\frac{B}{(z-1)^{3}}-\frac{1}{(z-1)^{2}}+\frac{1}{z-1}
$$

You can even memorize Eq (21) in Section 3.1 which gives a general formula for the $A_{j}^{(k)}$.

on a case by case basis. In particular, you can compute D in our example as

Not so Bad in Practice

Example

The previous result tells us that
$f(z)=\frac{1}{z(z-1)^{3}}=\frac{A}{z}+\frac{B}{(z-1)^{3}}+\frac{C}{(z-1)^{2}}+\frac{D}{z-1}$.
We discussed how we easily arrive at

$$
\frac{1}{z(z-1)^{3}}=-\frac{1}{z}+\frac{B}{(z-1)^{3}}-\frac{1}{(z-1)^{2}}+\frac{1}{z-1}
$$

You can even memorize Eq (21) in Section 3.1 which gives a general formula for the $A_{j}^{(k)}$. But I think it easier to figure it our on a case by case basis. In particular, you can compute D in our example as

$$
D=\lim _{z \rightarrow 1} \frac{1}{2} \frac{d^{2}}{d z^{2}}\left((z-1)^{3} f(z)\right)
$$

The Complex Exponential Function

Theorem

(1) We have $e^{w}=1$ if and only if $w=2 \pi i k$ for some $k \in \mathbf{Z}$.
(2) We have $e^{z}=e^{w}$ if and only if $w=z+2 \pi i k$ for some $k \in \mathbf{Z}$.

Corollary

The complex exponential function $f(z)=e^{z}$ is periodic with period $2 \pi i$. That is, $f(z+2 \pi i)=f(z)$ for all $z \in \mathbf{C}$.

Some Other Entire Functions

Definition

For all $z \in \mathbf{C}$, we define

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Theorem

The functions $f(z)=\cos (z)$ and $g(z)=\sin (z)$ are entire with

$$
\frac{d}{d z}(\cos (z))=-\sin (z) \quad \text { and } \quad \frac{d}{d z}(\sin (z))=\cos (z)
$$

Further both are periodic with period 2π.

[^0]: in the blue overlap and the red overlap, and we may not be able to

