Math 43: Spring 2020 Lecture 7 Part 1

Dana P. Williams

Dartmouth College

Monday April 13, 2020

Partial Fraction Decompositions over C

Remark

Using the Division Algorithm, analyzing rational functions reduces to considering the case where the degree of the numerator is strictly less than the degree of the denominator.

Theorem

Suppose that

$$f(z) = \frac{p(z)}{q(z)} = \frac{p(z)}{a(z - w_1)^{d_1}(z - w_2)^{d_2} \cdots (z - w_s)^{d_s}}$$

is a rational function with deg $p(z) < \deg q(z) = d_1 + d_2 + \cdots + d_s$. Then $f(z) = r_1(z) + r_2(z) + \cdots + r_s(z)$ where

$$r_k(z) = \frac{A_0^{(k)}}{(z - w_k)^{d_k}} + \frac{A_1^{(k)}}{(z - w_k)^{d_k - 1}} + \dots + \frac{A_{d_k - 1}^{(k)}}{(z - w_k)}$$

Not to Worry

Remark

Because we need a notation that allows for the general case, the notation in the previous result is way more scary that it is in practice.

Example

Let $f(z) = \frac{4z+4}{z(z-1)(z-2)^2}$. Then our partial fraction decomposition is supposed to be of the form

 $f(z) = \frac{A_0^{(1)}}{z} + \frac{A_0^{(2)}}{z-1} + \frac{A_0^{(3)}}{(z-2)^2} + \frac{A_1^{(3)}}{z-2}.$ for constants $A_i^{(j)}$. But in a particular example like this, there is no need to keep the pedantic notation in the theorem. Instead, we can just assume

$$f(z) = \frac{A}{z} + \frac{B}{z-1} + \frac{C}{(z-2)^2} + \frac{D}{z-2}$$

for constants A, B, C, and D.

Solving for the Constants

Example (Continued)

Since
$$f(z)=\frac{A}{z}+\frac{B}{z-1}+\frac{C}{(z-2)^2}+\frac{D}{z-2}$$
 we can solve for A easily: $A=\lim_{z\to 0}zf(z)=\lim_{z\to 0}\left[A+z\left(\frac{B}{z-1}+\frac{C}{(z-2)^2}+\frac{D}{z-2}\right)\right]$. But this limit is easy to evaluate! $A=\lim_{z\to 0}zf(z)=\lim_{z\to 0}\frac{4z+4}{(z-1)(z-2)^2}=-1$. Similarly, $B=\lim_{z\to 1}(z-1)f(z)=\lim_{z\to 1}\frac{4z+4}{z(z-2)^2}=\frac{8}{1}=8$. Moreover, we even have $C=\lim_{z\to 2}(z-2)^2f(z)=\lim_{z\to 2}\frac{4z+4}{z(z-1)}=\frac{12}{2}=6$. But how can we find D without a ridiculous amount of algebra?

Finding D

Example (Continued)

Observe that

$$(z-2)^2 f(z) = C + D(z-2) + (z-2)^2 (r_1(z) + r_2(x))$$
. Then $\frac{d}{dz}((z-2)^2 f(z)) = D + (z-2)(g(z))$ with g some rational function which is continuous at 2. Therefore

$$D = \lim_{z \to 2} \frac{d}{dz} ((z-2)^2 f(z)) = \lim_{z \to 2} \frac{d}{dz} (\frac{4z+4}{z(z-1)})$$

$$= \lim_{z \to 2} \frac{4(z^2-z) - (4z+4)(2z-1)}{(z^2-z)^2} = \frac{4(2)-12(3)}{2^2}$$

$$= \frac{8-36}{4} = -7.$$

Hence

$$\frac{4z+4}{z(z-1)(z-2)^2} = -\frac{1}{z} + \frac{8}{z-1} + \frac{6}{(z-2)^2} - \frac{7}{z-2}.$$

Time for a Break

That's all I'll have to say about Section 3.1 in lecture. We'll get back to complex functions in the next part of this lecture.

A winter view of New Hampshire from our backyard a few winters ago.