The Complex Logarithm

Definition

If $z \in \mathbf{C} \backslash\{0\}$, then we define

$$
\log (z)=\left\{w \in \mathbf{C}: e^{w}=z\right\} .
$$

Remark

$$
\log (z)=\{\ln (|z|)+i \arg (z)\}=\{\ln (|z|)+i \theta: \theta \in \arg (z)\} .
$$

A Nice Formula

Theorem

Suppose that $z w \neq 0$. Then
$\log (z w)=\log (z)+\log (w)=\{a+b: a \in \log (z)$ and $b \in \log (w)$.

Definition

We define the principal value of $\log (z)$ to be

$$
\log (z)=\ln (|z|)+i \operatorname{Arg}(z)
$$

I will refer to the function $z \mapsto \log (z)$ for all $z \neq 0$ as the principal branch of $\log (z)$. Notice that if $x>0$, then $\log (x)=\ln (x)$ so the principal branch extends the natural logarithm to D^{*}.

Analytic Branches of $\log (z)$

Theorem

The function $g(z)=\log (z)$ is analytic in $D^{*}=\mathbf{C} \backslash(-\infty, 0]$ and $g^{\prime}(z)=\frac{d}{d z}(\log (z))=\frac{1}{z}$.

Remark

We have other analytic branches of $\log (z)$ such as

$$
\mathcal{L}_{\tau}(z)=\ln (|z|)+i \arg _{\tau}(z) .
$$

which is analytic in $D_{\tau}^{*}=\mathbf{C} \backslash\left\{r e^{i \tau}: 0 \leq r<\infty\right\}$. Moreover $\frac{d}{d z}\left(\mathcal{L}_{\tau}(z)\right)=\frac{1}{z}$.

As Promised

Corollary

The function $u(z)=\ln (|z|)$ is harmonic in the punctured plane $\mathbf{C} \backslash\{0\}$. Furthermore, the functions $v_{\tau}(z)=\arg _{\tau}(z)$ are harmonic in D_{τ}^{*}. Note that $\operatorname{Arg}(z)=\arg _{-\pi}(z)$ and hence is harmonic in D^{*}.

Branches

Definition

Suppose that f is a set-valued function on a domain D. Then a continuous function F on D is called a branch of f on D if $F(z) \in f(z)$ for all $z \in D$.

Remark

Thus a branch of f is just want we usually want: a continuous way of choosing one element of $f(z)$ for each $z \in D$.

Example

(1) $F(z)=\operatorname{Arg}(z)$ is a branch of $f(z)=\arg (z)$ in D^{*}.
(2) $F(z)=\log (z)$ is an analytic branch of $f(z)=\log (z)$ in D^{*}. Similarly, $\mathcal{L}_{\tau}(z)$ is an analytic branch of $\log (z)$ in D_{τ}^{*}.
(3) Note that $\log (z)$ and $\mathcal{L}_{\pi}(z)$ are both branches of $\log (z)$ in D^{*}.

An Instructive Example

There is an analytic branch of $\log (z)$ defined in all of the domain D drawn at right. Note that no single one of our crude branches $\mathcal{L}_{\tau}(z)$ suffices. We had to more clever. The real point here is not the formula we worked out, but that even complicated domains can admit analytic branches of $\log (z)$ even if there is no obvious way to write them down.

No Accident

Proposition

Suppose that g is an analytic branch of $\log (z)$ in a domain $D \subset \mathbf{C} \backslash\{0\}$. Then $g^{\prime}(z)=\frac{1}{z}$.

Proposition

If f and g are both analytic branches of $\log (z)$ in a domain D, then there is a $k \in \mathbf{Z}$ such that $f(z)=g(z)+2 \pi i k$ for all $z \in D$.

