Math 43: Spring 2020 Lecture 8 Part 1

Dana P. Williams

Dartmouth College

Wednesday April 15, 2020

Back in the Day

Remark (Inverse Trig Functions)

Since sine and cosine are not one-to-one, we define inverse trigonometric functions by restricting the domain so that they become one-to-one:

$$y = \cos^{-1}(x)$$
 if and only if $\cos(y) = x$ and $y \in [0, \pi]$.

Today's Goal

Remark

The game today is to introduce a complex logarithm. This is easy in the real case since $x\mapsto e^x$ is one-to-one. However since $z\mapsto e^z$ is no longer one-to-one, we have the same sort of issues to deal with that we did back in the day with inverse trig functions!

The Complex Logarithm

Definition

If $z \in \mathbf{C} \setminus \{0\}$, then we define

$$\log(z) = \{ w \in \mathbf{C} : e^w = z \}.$$

Remark

Just as with arg(z), log(z) is a set-valued function. But what set is it? Let w = x + iy and try to solve $e^{x+iy} = z$. Let $z = re^{i\theta}$. Then we want

$$e^{x}e^{iy}=re^{i\theta}.$$

This means $e^x = r$ and hence $x = \ln(r) = \ln(|z|)$. But we also need $e^{iy} = e^{i\theta}$. Thus $y = \theta + 2\pi i k$ with $k \in \mathbf{Z}$.

Thus

$$\log(z) = \{ \ln(|z|) + i \arg(z) \} = \{ \ln(|z|) + i\theta : \theta \in \arg(z) \}.$$

An Example

Example

Find $\log(\sqrt{3}+i)$.

Solution.

The easy part is $|\sqrt{3}+i|=2$. To compute the argument, note that $\cos(\theta)=\frac{\sqrt{3}}{2}$ and $\sin(\theta)=\frac{1}{2}$. Thus $\theta=\frac{\pi}{6}+2\pi k$. Thus

$$\log(\sqrt{3}+i) = \{ \ln(2) + i\frac{\pi}{6} + 2\pi ik : k \in \mathbf{Z} \}. \quad \Box$$

A Nice Formula

Theorem

Suppose that $zw \neq 0$. Then

$$\log(zw) = \log(z) + \log(w) = \{ a+b : a \in \log(z) \text{ and } b \in \log(w). \}$$

Proof.

We have
$$\log(zw) = \{ \ln(|zw|) + i \arg(zw) \} = \{ \log(|z|) + \log(|w|) + i (\arg(z) + \arg(w)) \}$$
. And this is $\{ \ln(|z|) + i \arg(z) \} + \{ \ln(|w|) + i \arg(w) \} = \log(z) + \log(w)$.

A Certain Preference For Actual Functions

Definition

We define the principal value of log(z) to be

$$Log(z) = In(|z|) + i Arg(z).$$

I will refer to the function $z \mapsto \text{Log}(z)$ for all $z \neq 0$ as the principal branch of $\log(z)$. Notice that if x > 0, then $\log(x) = \ln(x)$ so the principal branch extends the natural logarithm to D^* .

Example

$$Log(-1-i) = \frac{1}{2}ln(2) - i\frac{3\pi}{4}.$$

Let's Take a Break