Math 43: Spring 2020 Lecture 8 Part 2

Dana P. Williams

Dartmouth College

Wednesday April 15, 2020

The Logarithm as a Analytic Function

Remark

Now that we have a complex logarithm, we want to see if we can add it our collection of analytic functions. The first problem is that $\log(z)$ is set valued and only defined on the punctured plane $\mathbb{C} \setminus \{0\}$. Hence we will have to introduce a single-valued version and work with it on a restricted domain. Of course, the natural first candidate is the principal branch $f(z) = \log(z) = \ln(|z|) + i \operatorname{Arg}(z)$. But $\operatorname{Arg}(z)$ has a nasty jump

 $f(z) = \text{Log}(z) = \ln(|z|) + i \operatorname{Arg}(z)$. But $\operatorname{Arg}(z)$ has a nasty jump discontinuity along the whole negative real-axis! Hence it is natural to consider the domain $D^* = \mathbb{C} \setminus (-\infty, 0]$. We will adopt this notation for the future.

Local Properties

Remark

Properties of a function $f:D\subset \mathbf{C}\to \mathbf{C}$ like continuity and differentiablity at a point z_0 are what we often call local properties. By this, we just mean that they are determined only by the values of f in a neighborhood of z_0 . This means that if we can write D as a union of open sets on which f is, say, continuous, the f is continuous on all of D. We will do this in the next result by writing $D^* = \mathbf{C} \setminus (-\infty, 0]$ as the union of the open upper half-plane, the open lower half-plane, and the open right half-plane.

Arg(z) is continuous

Lemma

f(z) = Arg(z) is continuous in D^* .

Proof.

If y>0, then $f(x+iy)=\cos^{-1}\left(\frac{x}{r}\right)=\cos^{-1}\left(\frac{x}{\sqrt{x^2+y^2}}\right)$. Hence f is continuous in the open upper half-plane. However, if y<0, then $f(x+iy)=-\cos^{-1}\left(\frac{x}{r}\right)$ and f is continuous in the open lower half-plane. But if x>0, then $f(x+iy)=\tan^{-1}\left(\frac{y}{x}\right)$. Hence f is continuous in the open right half-plane. Since continuity is a local property, f is continuous in all of D^* .

Corollary

g(z) = Log(z) is continuous on D^* .

Proof.

We already know $z\mapsto \ln(|z|)$ is continuous on D^* . Thus, using the lemma, we know both the real and imaginary parts of g are continuous.

Enough with the Warm-Up Act

$\mathsf{Theorem}$

The function g(z) = Log(z) is analytic in D^* and $g'(z) = \frac{d}{dz}(\text{Log}(z)) = \frac{1}{z}$.

Proof.

Fix
$$z_0 \in D^*$$
. Write $w = \text{Log}(z)$ and $w_0 = \text{Log}(z_0)$. Hence $z = e^w$ and $z_0 = e^{w_0}$. Thus $\frac{g(z) - g(z_0)}{z - z_0} = \frac{w - w_0}{e^w - e^{w_0}}$. Furthermore, if $z \neq z_0$, then $z = e^w$ and $z_0 = e^{w_0}$ forces $w \neq w_0$. Then $g'(z_0) = \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{w \to w_0} \frac{w - w_0}{e^w - e^{w_0}}$. But $\lim_{w \to w_0} \frac{w - w_0}{e^w - e^{w_0}} = \lim_{w \to w_0} \frac{1}{e^{w_0} - e^{w_0}} = \frac{1}{z_0}$.

Nothing Special about Log(z)

There is nothing sacred about the principal branch, Log(z), of log(z). We just acted crudely to produce a single-valued version of log(z) by removing the ray $arg(z) = \pi$. We could pick any other ray and produce just as good—or bad—a function. For example, let $\tau \in \mathbf{R}$ and define

$$\mathcal{L}_{ au}(z) = \ln(|z|) + i \arg_{ au}(z).$$

(Recall that $\arg_{\tau}(z) \in \arg(z) \cap (\tau, \tau + 2\pi]$.) Since $\arg_{\tau}(z)$ has a jump discontinuity along the ray $\arg(z) = \tau$, we can repeat the above proof to show that $\mathcal{L}_{\tau}(z)$ is analytic in

$$D_{ au}^* = \mathbf{C} \setminus \{ re^{i au} : 0 \le r < \infty \}$$
. Moreover $\frac{d}{dz} (\mathcal{L}_{ au}(z)) = \frac{1}{z}$.

As Promised

Corollary

The function $u(z) = \ln(|z|)$ is harmonic in the punctured plane $\mathbf{C} \setminus \{0\}$. Furthermore, the functions $v_{\tau}(z) = \arg_{\tau}(z)$ are harmonic in D_{τ}^* . (Note that $\operatorname{Arg}(z) = \arg_{-\pi}(z)$.)

Proof.

Since we can write out specific formulas for u(z) and $\arg_{\tau}(z)$, we know that they have continuous second partials as functions of (x,y). Since $\mathcal{L}_{\tau}(z)=u(z)+i\arg_{\tau}(z)$ is analytic in D_{τ}^* , we see that u and \arg_{τ} must be harmonic in D_{τ}^* as the real and imaginary parts, respectively, of an analytic function. But then u must be harmonic in $D^* \cup D^*_0 = D^*_{-\pi} \cup D^*_0$.

Let's take another break.