Math 43: Spring 2020 Lecture 8 Part 3

Dana P. Williams

Dartmouth College

Wednesday April 15, 2020

Branches

Remark

We have seen a number of set-valued functions such as $z\mapsto \arg(z),\ z\mapsto \log(z)$, and even $z\mapsto z^{\frac{1}{n}}$ for any $n\ge 2$. To my annoyance, the text calls these "multiple-valued functions". But our new techniques deal with complex-valued functions.

Definition

Suppose that f is a set-valued function on a domain D. Then a continuous function F on D is called a branch of f on D if $F(z) \in f(z)$ for all $z \in D$.

Remark

Thus a branch of f is just want we usually want: a continuous way of choosing one element of f(z) for each $z \in D$.

Examples

Example

- F(z) = Arg(z) is a branch of f(z) = arg(z) in D^* .
- **2** F(z) = Log(z) is an analytic branch of $f(z) = \log(z)$ in D^* . Similarly, $\mathcal{L}_{\tau}(z)$ is an analytic branch of $\log(z)$ in D^*_{τ} .
- **3** Note that Log(z) and $\mathcal{L}_{\pi}(z)$ are both branches of log(z) in D^* .

Example

 $F(z)=\exp\left(\frac{1}{2}\operatorname{Log}(z)\right)$ is an analytic branch of $z^{\frac{1}{2}}$ in D^* : to see this, just notice that $F(z)^2=\exp(2\cdot\frac{1}{2}\operatorname{Log}(z))=\exp(\operatorname{Log}(z))=z$. Hence $F(z)\in z^{\frac{1}{2}}$ as required. Also notice that if x>0, then $F(x)=\sqrt{x}$.

Pasting

Remark

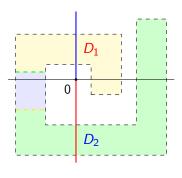
Since complex differentiablity is a local property we can build new analytic functions by pasting together analytic functions that agree on open overlaps. Suppose $f:D_1\subset \mathbf{C}\to \mathbf{C}$ is analytic on a domain D_1 and $g:D_2\subset \mathbf{C}\to \mathbf{C}$ is analytic on a domain D_2 . We know from homework that $D=D_1\cup D_2$ is a domain proved $D_1\cap D_2$ is not empty. If g(z)=f(z) for all $z\in D_1\cap D_2$, then we can define an analytic function h on D by

$$h(z) = \begin{cases} f(z) & \text{if } z \in D_1, \text{ and} \\ g(z) & \text{if } z \in D_2. \end{cases}$$

This technique is called pasting. When you glue the pieces together, they have to overlap perfectly.

An Instructive Example

Let D be the domain which is the union of the domains D_1 and D_2 where D_1 consists of the yellow region and D_2 is the green region. The idea is the D_1 and D_2 overlap in the blue region. We want to find an analytic branch of log(z) in all of D. Note no $\mathcal{L}_{\tau}(z)$ will be analytic or even continuous in all of D. But $f(z) = \mathcal{L}_{-\frac{\pi}{2}}(z)$



is an analytic branch in \vec{D}_1 . Similarly, $g(z) = \mathcal{L}_{\frac{\pi}{2}}(z)$ is an analytic branch in D_2 . Furthermore f and g are equal in the blue overlap!

Then
$$h(z) = \begin{cases} f(z) & \text{if } z \in D_1 \\ g(z) & \text{if } z \in D_2 \end{cases}$$
 is an analytic branch of $\log(z)$ in all of D !

No Accident

Proposition

Suppose that g is an analytic branch of log(z) in a domain

$$D \subset \mathbf{C} \setminus \{0\}$$
. Then $g'(z) = \frac{1}{z}$.

Proof.

Since by definition, $g(z) \in \log(z)$, we have $z = e^{g(z)}$. Since g is analytic by assumption, we can differentiate both sides to get $1 = g'(z)e^{g(z)} = g'(z) \cdot z$. Now divide both sides by z.

Branches of log(z)

Question

Suppose that f and g are both analytic branches of log(z) in a domain D. How are f and g related?

Solution.

First, observe that by definition, $e^{f(z)} = z = e^{g(z)}$ for all $z \in D$. This is just what it means to be a branch of $\log(z)$! Thus if $z_0 \in D$, we have $e^{f(z_0)} = z_0 = e^{g(z_0)}$. Then $f(z_0) = g(z_0) + 2\pi i k_0$ for some $k_0 \in \mathbf{Z}$. Similarly, if $z_1 \in D$, then $f(z_1) = g(z_1) + 2\pi i k_1$ with $k_1 \in \mathbf{Z}$. We'd like to argue that $k_0 = k_1$ and that there is a fixed $k \in \mathbf{Z}$, that does not depend on z, such that $f(z) = g(z) + 2\pi i k$ for all $z \in D$. A hint as to how to prove this is the realization that we are trying to prove that h(z) = f(z) - g(z) is a constant. But by the previous result, $h'(z) = f'(z) - g'(z) = \frac{1}{z} - \frac{1}{z} = 0$. Hence h is constant. Therefore any two analytic branches of log(z) in a domain D must differ by a constant multiple of $2\pi i$.

That is Enough for One Lecture

With all due apologies to Gary Larson and to you.