Math 43: Spring 2020 Lecture 8 Part 3

Dana P. Williams
Dartmouth College

Wednesday April 15, 2020

Branches

Remark

We have seen a number of set-valued functions such as $z \mapsto \arg (z), z \mapsto \log (z)$, and even $z \mapsto z^{\frac{1}{n}}$ for any $n \geq 2$. To my annoyance, the text calls these "multiple-valued functions". But our new techniques deal with complex-valued functions.

Definition

Suppose that f is a set-valued function on a domain D. Then a continuous function F on D is called a branch of f on D if $F(z) \in f(z)$ for all $z \in D$.

Remark

Thus a branch of f is just want we usually want: a continuous way of choosing one element of $f(z)$ for each $z \in D$.

Examples

Example

(1) $F(z)=\operatorname{Arg}(z)$ is a branch of $f(z)=\arg (z)$ in D^{*}.
(2) $F(z)=\log (z)$ is an analytic branch of $f(z)=\log (z)$ in D^{*}. Similarly, $\mathcal{L}_{\tau}(z)$ is an analytic branch of $\log (z)$ in D_{τ}^{*}.
(3) Note that $\log (z)$ and $\mathcal{L}_{\pi}(z)$ are both branches of $\log (z)$ in D^{*}.

Example

$F(z)=\exp \left(\frac{1}{2} \log (z)\right)$ is an analytic branch of $z^{\frac{1}{2}}$ in D^{*} : to see this, just notice that $F(z)^{2}=\exp \left(2 \cdot \frac{1}{2} \log (z)\right)=\exp (\log (z))=z$. Hence $F(z) \in z^{\frac{1}{2}}$ as required. Also notice that if $x>0$, then $F(x)=\sqrt{x}$.

Pasting

Remark

Since complex differentiablity is a local property we can build new analytic functions by pasting together analytic functions that agree on open overlaps. Suppose $f: D_{1} \subset \mathbf{C} \rightarrow \mathbf{C}$ is analytic on a domain D_{1} and $g: D_{2} \subset \mathbf{C} \rightarrow \mathbf{C}$ is analytic on a domain D_{2}. We know from homework that $D=D_{1} \cup D_{2}$ is a domain proved $D_{1} \cap D_{2}$ is not empty. If $g(z)=f(z)$ for all $z \in D_{1} \cap D_{2}$, then we can define an analytic function h on D by

$$
h(z)= \begin{cases}f(z) & \text { if } z \in D_{1}, \text { and } \\ g(z) & \text { if } z \in D_{2}\end{cases}
$$

This technique is called pasting. When you glue the pieces together, they have to overlap perfectly.

An Instructive Example

Let D be the domain which is the union of the domains D_{1} and D_{2} where D_{1} consists of the yellow region and D_{2} is the green region. The idea is the D_{1} and D_{2} overlap in the blue region. We want to find an analytic branch of $\log (z)$ in all of D. Note no $\mathcal{L}_{\tau}(z)$ will be analytic or even continuous in
 all of D. But $f(z)=\mathcal{L}_{-\frac{\pi}{2}}(z)$ is an analytic branch in D_{1}. Similarly, $g(z)=\mathcal{L}_{\frac{\pi}{2}}(z)$ is an analytic branch in D_{2}. Furthermore f and g are equal in the blue overlap!
Then $h(z)=\left\{\begin{array}{ll}f(z) & \text { if } z \in D_{1} \\ g(z) & \text { if } z \in D_{2}\end{array}\right.$ is an analytic branch of $\log (z)$ in all of D !

No Accident

Proposition

Suppose that g is an analytic branch of $\log (z)$ in a domain
$D \subset \mathbf{C} \backslash\{0\}$. Then $g^{\prime}(z)=\frac{1}{z}$.

Proof.

Since by definition, $g(z) \in \log (z)$, we have $z=e^{g(z)}$. Since g is analytic by assumption, we can differentiate both sides to get $1=g^{\prime}(z) e^{g(z)}=g^{\prime}(z) \cdot z$. Now divide both sides by z.

Branches of $\log (z)$

Question

Suppose that f and g are both analytic branches of $\log (z)$ in a domain D. How are f and g related?

Solution.

First, observe that by definition, $e^{f(z)}=z=e^{g(z)}$ for all $z \in D$.
This is just what it means to be a branch of $\log (z)!$ Thus if $z_{0} \in D$, we have $e^{f\left(z_{0}\right)}=z_{0}=e^{g\left(z_{0}\right)}$. Then $f\left(z_{0}\right)=g\left(z_{0}\right)+2 \pi i k_{0}$ for some $k_{0} \in \mathbf{Z}$. Similarly, if $z_{1} \in D$, then $f\left(z_{1}\right)=g\left(z_{1}\right)+2 \pi i k_{1}$ with $k_{1} \in \mathbf{Z}$. We'd like to argue that $k_{0}=k_{1}$ and that there is a fixed $k \in \mathbf{Z}$, that does not depend on z, such that $f(z)=g(z)+2 \pi i k$ for all $z \in D$. A hint as to how to prove this is the realization that we are trying to prove that $h(z)=f(z)-g(z)$ is a constant. But by the previous result, $h^{\prime}(z)=f^{\prime}(z)-g^{\prime}(z)=\frac{1}{z}-\frac{1}{z}=0$. Hence h is constant. Therefore any two analytic branches of $\log (z)$ in a domain D must differ by a constant multiple of $2 \pi i$.

That is Enough for One Lecture

"Mr. Osborne, may I be excused? My brain is full."

With all due apologies to Gary Larson and to you.

