Math 43: Spring 2020 Lecture 9 Summary

Dana P. Williams
Dartmouth College

Friday April 17, 2020

Complex Powers

Lemma ($\alpha=\frac{1}{n}$)

$$
\text { If } z \neq 0 \text {, then } z^{\frac{1}{n}}=\exp \left(\frac{1}{n} \log (z)\right) \text {. }
$$

Remark

Here $z^{\frac{1}{n}}$ is the set of $n^{\text {th }}$-roots of z. On the other hand, $\exp \left(\frac{1}{n} \log (z)\right)$ is the set of values $e^{\frac{1}{n} w}$ where $w \in \log (z)$. The lemma asserts these two sets are the same.

Definition

If $\alpha \in \mathbf{C}$ and $z \neq 0$, then we define $z^{\alpha}=\exp (\alpha \log (z))$.

Remark

This is a reasonable definition only because z^{n} with $n \in Z$ and $z^{\frac{1}{n}}$ with $n \in \mathbf{N}$ still mean what they always did. Notice that unless α is an integer, then z^{α} is a set.

Moving On

Definition

A continuous function $z(t)=x(t)+i y(t)$ on a closed interval $[a, b] \subset \mathbf{R}$ is called a path. We say z is differentiable if x and y are. Then $z^{\prime}(t)=x^{\prime}(t)+i y^{\prime}(t)$ is a tangent vector to the curve parameterized by z if $z^{\prime}(t) \neq 0$.

Smooth Arcs and Smooth Curves

Definition

A smooth arc $\gamma \subset \mathbf{C}$ is the image of a differentiable path
$z:[a, b] \rightarrow \mathbf{C}$ such that
(a) $z^{\prime}(t) \neq 0$ for all $t \in[a, b]$, and
(b) z is one-to-one on $[a, b]$.

We call $\gamma \subset \mathbf{C}$ a smooth closed curve if γ is the image of a differentiable path $z:[a, b] \rightarrow \mathbf{C}$ such that
(c) $z^{\prime}(t) \neq 0$ for all $t \in[a, b]$, and
(d) z is one-to-one on $[a, b)$ with $z(a)=z(b)$ and $z^{\prime}(a)=z^{\prime}(b)$.

A smooth curve is either a smooth arc or a smooth closed curve.
If γ is a smooth curve and $z:[a, b] \rightarrow \mathbf{C}$ is a functions satisfying either (a) and (b), or (c) and (d) above, then $z:[a, b] \rightarrow \mathbf{C}$ is called an admissible parameterization of γ.

Orientation

Remark

An admissible parameterization $z:[a, b] \rightarrow \mathbf{C}$ of a smooth curve γ gives γ an orientation. In the case of smooth arc, we move from $z(a)$ to $z(b)$. Thus if $a \leq t_{1}<t_{2} \leq b, z\left(t_{1}\right)$ comes before $z\left(t_{2}\right)$. In the case of a smooth closed curve, if $a<t_{1}<t_{2}<b$, again $z\left(t_{1}\right)$ comes before $z\left(t_{2}\right)$. (Things get fuzzy at the initial point $z(a)$ so don't worry about that.)

(a) A Smooth Arc

Orientations

(b) A Smooth Closed Curve

Remark

Note that a given smooth curve has two possible orientations. An admissible parameterization is compatible with one and only one of these.

More Terminology

Definition

A smooth curve together with an orientation is called a directed smooth curve. An admissible parameterization of a directed smooth curve is an admissible parameterization consistent with the orientation.

Remark

If $z:[a, b] \rightarrow \mathbf{C}$ is an admissible parameterization of a directed smooth curve γ, then so are
(1) $w(t)=z(a+t(b-a))$ for $t \in[0,1]$, and
(2) $\sigma(t)=z\left(a+\frac{b-a}{d-c}(t-c)\right)$ for $t \in[c, d]$.

This means that given a directed smooth curve, we can always find an admissible parameterization with any domain interval we wish. The usual choice is $[0,1]$, but we are free to do as we please.

The Opposite Curve

Definition

If γ is a directed smooth curve, then we write $-\gamma$ for the set γ with the opposite orientation.

Example

Let $z:[a, b] \rightarrow \mathbf{C}$ be an admissible parameterization of a directed smooth curve γ. Then the following are admissible parameterizations of the opposite curve $-\gamma$.
(1) $w:[-b,-a] \rightarrow \mathbf{C}$ given by $w(t)=z(-t)$.
(2) $\sigma:[0,1] \rightarrow \mathbf{C}$ given by $\sigma(t)=z(b+t(a-b))$.

