Math 43: Spring 2020 Lecture 9 Summary

Dana P. Williams

Dartmouth College

Friday April 17, 2020

Complex Powers

Lemma (
$$\alpha = \frac{1}{n}$$

If
$$z \neq 0$$
, then $z^{\frac{1}{n}} = \exp\left(\frac{1}{n}\log(z)\right)$.

Remark

Here $z^{\frac{1}{n}}$ is the set of n^{th} -roots of z. On the other hand, $\exp\left(\frac{1}{n}\log(z)\right)$ is the set of values $e^{\frac{1}{n}w}$ where $w \in \log(z)$. The lemma asserts these two sets are the same.

Definition

If
$$\alpha \in \mathbf{C}$$
 and $z \neq 0$, then we define $z^{\alpha} = \exp(\alpha \log(z))$.

Remark

This is a reasonable definition only because z^n with $n \in Z$ and $z^{\frac{1}{n}}$ with $n \in \mathbf{N}$ still mean what they always did. Notice that unless α is an integer, then z^{α} is a set.

Definition

A continuous function z(t) = x(t) + iy(t) on a closed interval $[a, b] \subset \mathbf{R}$ is called a path. We say z is differentiable if x and y are. Then z'(t) = x'(t) + iy'(t) is a tangent vector to the curve parameterized by z if $z'(t) \neq 0$.

Smooth Arcs and Smooth Curves

Definition

A smooth arc $\gamma \subset \mathbf{C}$ is the image of a differentiable path $z : [a, b] \rightarrow \mathbf{C}$ such that

(a)
$$z'(t) \neq 0$$
 for all $t \in [a, b]$, and

(b) z is one-to-one on [a, b].

We call $\gamma \subset \mathbf{C}$ a smooth closed curve if γ is the image of a differentiable path $z : [a, b] \to \mathbf{C}$ such that

(c)
$$z'(t) \neq 0$$
 for all $t \in [a, b]$, and

(d) z is one-to-one on [a, b) with z(a) = z(b) and z'(a) = z'(b).

A smooth curve is either a smooth arc or a smooth closed curve.

If γ is a smooth curve and $z : [a, b] \to \mathbf{C}$ is a functions satisfying either (a) and (b), or (c) and (d) above, then $z : [a, b] \to \mathbf{C}$ is called an admissible parameterization of γ .

Orientation

Remark

An admissible parameterization $z : [a, b] \to \mathbf{C}$ of a smooth curve γ gives γ an orientation. In the case of smooth arc, we move from z(a) to z(b). Thus if $a \le t_1 < t_2 \le b$, $z(t_1)$ comes before $z(t_2)$. In the case of a smooth closed curve, if $a < t_1 < t_2 < b$, again $z(t_1)$ comes before $z(t_2)$. (Things get fuzzy at the initial point z(a) so don't worry about that.)

Remark

Note that a given smooth curve has two possible orientations. An admissible parameterization is compatible with one and only one of these.

Definition

A smooth curve together with an orientation is called a directed smooth curve. An admissible parameterization of a directed smooth curve is an admissible parameterization consistent with the orientation.

Remark

If $z : [a, b] \rightarrow \mathbf{C}$ is an admissible parameterization of a directed smooth curve γ , then so are

$$\textbf{9} \hspace{0.1in} w(t) = z \bigl(a + t (b-a) \bigr) \hspace{0.1in} \text{for} \hspace{0.1in} t \in [0,1], \hspace{0.1in} \text{and} \hspace{0.1in}$$

2
$$\sigma(t) = z\left(a + \frac{b-a}{d-c}(t-c)\right)$$
 for $t \in [c,d]$.

This means that given a directed smooth curve, we can always find an admissible parameterization with any domain interval we wish. The usual choice is [0, 1], but we are free to do as we please.

Definition

If γ is a directed smooth curve, then we write $-\gamma$ for the set γ with the opposite orientation.

Example

Let $z : [a, b] \to \mathbf{C}$ be an admissible parameterization of a directed smooth curve γ . Then the following are admissible parameterizations of the opposite curve $-\gamma$.

•
$$w: [-b, -a] \rightarrow \mathbf{C}$$
 given by $w(t) = z(-t)$.

2
$$\sigma: [0,1] \rightarrow \mathbf{C}$$
 given by $\sigma(t) = z(b + t(a - b))$.