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Complex Powers

Remark

Now that we have a working relationship with the complex
logarithm, we can play some games. For motivation, let’s think
back to real exponentials such as xα for a real constant α. But
how do we make sense of something like 2

√
2? We actually define

2α = eα ln 2. But we can do something similar over the complexes
as we now have both a complex exponential and a complex
logarithm.
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nth-Roots

Lemma (α = 1
n )

If z 6= 0, then z
1
n = exp

(
1
n log(z)

)
.

Remark

Here z
1
n is the set of nth-roots of z . On the other hand, exp

(
1
n log(z)

)
is

the set of values e
1
n
w where w ∈ log(z). The lemma asserts these two sets

are the same.

Proof.

If z = re iθ, then

exp
(1

n
log(z)

)
= exp

(1

n
(ln(r) + iθ + 2πik

))
= exp

(1

n
ln(r)

)
exp

(
i
θ + 2πk

n

)
= n
√
r exp

(
i
θ + 2πk

n

)
and we get distinct values only for k = 0, 1, 2, . . . , n − 1 which is exactly

how we enumerated z
1
n earlier.
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Complex Powers

Definition

If α ∈ C and z 6= 0, then we define zα = exp
(
α log(z)

)
.

Remark

This is a reasonable definition only because zn with n ∈ Z and z
1
n

with n ∈ N still mean what they always did. Notice that unless α
is an integer, then zα is a set.

Example

Find i i .

Solution.

i i = exp
(
i log(i)

)
= exp

(
i(0 + i π2 + 2πik)

)
= exp(−π

2 − 2πk) =

e−
π
2 e2πk for k ∈ Z.
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Principal Branch

Definition

We call F (z) = exp
(
α Log(z)

)
the principal branch of zα in D∗.

Example (Calculus)

Note that F (z) = exp(α Log(z)) is analytic in D∗. Furthermore,
F ′(z) = α

z exp(α Log(z)) = α
z F (z) =

α exp(− Log(z)) exp(α Log(z)) = α exp
(
(α− 1) Log(z)

)
.

Thus we are tempted to write

d

dz
(zα) = αzα−1.

But this only makes sense for functions. The above says it is valid
if we argee to use the principal value on both sides of the displayed
equation!
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Branches are Tricky

Example

Consider f (z) = (z2 − 1)
1
2 . Can we find an analytic branch of f in

D = { z : |z | > 1 }?

We want to find an analytic function F in D such that
F (z)2 = z2 − 1! An obvious first guess would be
F (z) = exp

(
1
2 Log(z2 − 1)

)
. But where is F analytic? The natural

domain of analyticity of F is D ′ = { z : z2 − 1 ∈ D∗ }. Since
(x + iy)2 − 1 = x2 − y2 − 1 + i(2xy), we see that x + iy /∈ D ′

when xy = 0 and x2 − y2 − 1 ≤ 0.

D

Thus if x = 0,
then x + iy /∈ D ′. On the other hand, if
y = 0, then x + iy /∈ D ′ if |x | ≤ 1. Thus D ′

is the complement of the imaginary axis and
the segment [−1, 1]. Unfortunately, D 6⊂ D ′.
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Let’s Not Give Up

We could also try G (z) = exp
(
L0(z2 − 1)

)
. Then G is analytic in

D ′′ = { z : z2 − 1 ∈ C \ [0,∞) }. I leave it to you to check that D ′′

is the complement of the two rays (−∞, 1] and [1,∞). DO THIS!
Sadly, we still have D 6⊂ D ′′.
Fortunately, the authors of our text have a trick to share. Observe
that z2 − 1 = z2

(
1− 1

z2

)
. So we could try

H(z) = z exp
(
1
2 Log(1− 1

z )
)
. Then H is analytic in

D ′′′ = { z : 1− 1
z2
∈ D∗ }. But 1− 1

z2
= 1− 1

x2−y2+i2xy
is real only

when xy = 0. If x = 0, then 1− 1
−y2 ≥ 0. If y = 0, then

1− 1
x2
≤ 0 only when |x | ≤ 1. Thus D ′′′ = C \ [−1, 1] and

D ⊂ D ′′′. Yay.
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Inverse Trigonometric Functions

Example

Let cos−1(z) = {w ∈ C : cos(w) = z }. Describe this set.

If cos(w) = z , then z = 1
2(e iw + e−iw ). Hence

e iw − 2z + e−iw = 0, and (e iw )2 − 2ze iw + 1 = 0. Thus

e iw = 2z+(4z2−4)
1
2

2 = z + (z2 − 1)
1
2 . (Keep in mind (z2 − 1)

1
2 is

2-valued.) We can then take logarithms to get

iw = log(z + (z2 − 1)
1
2 ) or w = −i log(z + (z2 − 1)

1
2 ). Thus we

can write
cos−1(z) = −i log(z + (z2 − 1)

1
2 ).

Time for a Break
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