# Math 43: Spring 2020 Lecture 9 Part 1 

Dana P. Williams<br>Dartmouth College

Friday April 17, 2020

## Complex Powers

## Remark

Now that we have a working relationship with the complex logarithm, we can play some games. For motivation, let's think back to real exponentials such as $x^{\alpha}$ for a real constant $\alpha$. But how do we make sense of something like $2^{\sqrt{2}}$ ? We actually define $2^{\alpha}=e^{\alpha \ln 2}$. But we can do something similar over the complexes as we now have both a complex exponential and a complex logarithm.

## $n^{\text {th }}$-Roots

Lemma ( $\alpha=\frac{1}{n}$ )
If $z \neq 0$, then $z^{\frac{1}{n}}=\exp \left(\frac{1}{n} \log (z)\right)$.

## Remark

Here $z^{\frac{1}{n}}$ is the set of $n^{\text {th }}$-roots of $z$. On the other hand, $\exp \left(\frac{1}{n} \log (z)\right)$ is the set of values $e^{\frac{1}{n} w}$ where $w \in \log (z)$. The lemma asserts these two sets are the same.

## Proof.

If $z=r e^{i \theta}$, then

$$
\begin{aligned}
\exp \left(\frac{1}{n} \log (z)\right) & =\exp \left(\frac{1}{n}(\ln (r)+i \theta+2 \pi i k)\right) \\
& =\exp \left(\frac{1}{n} \ln (r)\right) \exp \left(i \frac{\theta+2 \pi k}{n}\right) \\
& =\sqrt[n]{r} \exp \left(i \frac{\theta+2 \pi k}{n}\right)
\end{aligned}
$$

and we get distinct values only for $k=0,1,2, \ldots, n-1$ which is exactly how we enumerated $z^{\frac{1}{n}}$ earlier.

## Complex Powers

## Definition

If $\alpha \in \mathbf{C}$ and $z \neq 0$, then we define $z^{\alpha}=\exp (\alpha \log (z))$.

## Remark

This is a reasonable definition only because $z^{n}$ with $n \in Z$ and $z^{\frac{1}{n}}$ with $n \in \mathbf{N}$ still mean what they always did. Notice that unless $\alpha$ is an integer, then $z^{\alpha}$ is a set.

## Example

Find $i^{i}$.

## Solution.

$i^{i}=\exp (i \log (i))=\exp \left(i\left(0+i \frac{\pi}{2}+2 \pi i k\right)\right)=\exp \left(-\frac{\pi}{2}-2 \pi k\right)=$ $e^{-\frac{\pi}{2}} e^{2 \pi k}$ for $k \in \mathbf{Z}$.

## Principal Branch

## Definition

We call $F(z)=\exp (\alpha \log (z))$ the principal branch of $z^{\alpha}$ in $D^{*}$.

## Example (Calculus)

Note that $F(z)=\exp (\alpha \log (z))$ is analytic in $D^{*}$. Furthermore, $F^{\prime}(z)=\frac{\alpha}{z} \exp (\alpha \log (z))=\frac{\alpha}{z} F(z)=$ $\alpha \exp (-\log (z)) \exp (\alpha \log (z))=\alpha \exp ((\alpha-1) \log (z))$.

Thus we are tempted to write

$$
\frac{d}{d z}\left(z^{\alpha}\right)=\alpha z^{\alpha-1}
$$

But this only makes sense for functions. The above says it is valid if we argee to use the principal value on both sides of the displayed equation!

## Branches are Tricky

## Example

Consider $f(z)=\left(z^{2}-1\right)^{\frac{1}{2}}$. Can we find an analytic branch of $f$ in $D=\{z:|z|>1\}$ ?

We want to find an analytic function $F$ in $D$ such that $F(z)^{2}=z^{2}-1$ ! An obvious first guess would be $F(z)=\exp \left(\frac{1}{2} \log \left(z^{2}-1\right)\right)$. But where is $F$ analytic? The natural domain of analyticity of $F$ is $D^{\prime}=\left\{z: z^{2}-1 \in D^{*}\right\}$. Since $(x+i y)^{2}-1=x^{2}-y^{2}-1+i(2 x y)$, we see that $x+i y \notin D^{\prime}$ when $x y=0$ and $x^{2}-y^{2}-1 \leq 0$.
Thus if $x=0$, then $x+i y \notin D^{\prime}$. On the other hand, if $y=0$, then $x+$ iy $\notin D^{\prime}$ if $|x| \leq 1$. Thus $D^{\prime}$ is the complement of the imaginary axis and the segment $[-1,1]$. Unfortunately, $D \not \subset D^{\prime}$.


## Let's Not Give Up

We could also try $G(z)=\exp \left(\mathcal{L}_{0}\left(z^{2}-1\right)\right)$. Then $G$ is analytic in $D^{\prime \prime}=\left\{z: z^{2}-1 \in \mathbf{C} \backslash[0, \infty)\right\}$. I leave it to you to check that $D^{\prime \prime}$ is the complement of the two rays $(-\infty, 1]$ and $[1, \infty)$. DO THIS! Sadly, we still have $D \not \subset D^{\prime \prime}$.
Fortunately, the authors of our text have a trick to share. Observe that $z^{2}-1=z^{2}\left(1-\frac{1}{z^{2}}\right)$. So we could try
$H(z)=z \exp \left(\frac{1}{2} \log \left(1-\frac{1}{z}\right)\right)$. Then $H$ is analytic in
$D^{\prime \prime \prime}=\left\{z: 1-\frac{1}{z^{2}} \in D^{*}\right\}$. But $1-\frac{1}{z^{2}}=1-\frac{1}{x^{2}-y^{2}+i 2 x y}$ is real only
when $x y=0$. If $x=0$, then $1-\frac{1}{-y^{2}} \geq 0$. If $y=0$, then $1-\frac{1}{x^{2}} \leq 0$ only when $|x| \leq 1$. Thus $D^{\prime \prime \prime}=\mathbf{C} \backslash[-1,1]$ and $D \subset D^{\prime \prime \prime}$. Yay.

## Inverse Trigonometric Functions

## Example

Let $\cos ^{-1}(z)=\{w \in \mathbf{C}: \cos (w)=z\}$. Describe this set.
If $\cos (w)=z$, then $z=\frac{1}{2}\left(e^{i w}+e^{-i w}\right)$. Hence $e^{i w}-2 z+e^{-i w}=0$, and $\left(e^{i w}\right)^{2}-2 z e^{i w}+1=0$. Thus $e^{i w}=\frac{2 z+\left(4 z^{2}-4\right)^{\frac{1}{2}}}{2}=z+\left(z^{2}-1\right)^{\frac{1}{2}}$. (Keep in mind $\left(z^{2}-1\right)^{\frac{1}{2}}$ is 2 -valued.) We can then take logarithms to get $i w=\log \left(z+\left(z^{2}-1\right)^{\frac{1}{2}}\right)$ or $w=-i \log \left(z+\left(z^{2}-1\right)^{\frac{1}{2}}\right)$. Thus we can write

$$
\cos ^{-1}(z)=-i \log \left(z+\left(z^{2}-1\right)^{\frac{1}{2}}\right)
$$

Time for a Break

