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1 Convergence of sinx.

We have discussed the remainder formula for Taylor polynomials in class, and
it is worked over in Calculus, by Adams, in some detail. As one last example,
our formula in class for the Taylor polynomial P2n+1 of sin x around 0 can be
expressed algebraically as

sinx = x− x3

3!
+
x5

5!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
± sinX

(2n+ 2)!
x2n+2,

whereX is some constant between 0 and x and the plus or minus sign depends
on where we are in the rotation of plusses and minuses in the derivatives of
sinx. (In fact, we get a plus sign whenever 2n + 2 is a multiple of 4, but
whether or not we have a plus sign is unimportant.) What is important is
that no matter what X is, sinX ≤ 1. That means that the last term, the
remainder is no more than x2n+2/(2n + +2)!. It is not too hard to see that
the limit of this remainder is zero, no matter how big x is. Note that x2n+2 is
the product of n+ 1 terms each equal to x2. For any n larger than or equal
to x2, the terms n+ 1, n+ 2, . . . , 2n+ 2 are all larger than x2, and there are
n+ 1 such terms. Dividing one of them into each of the x2s in x2n+2 gives us
a number less than 1, so this remainder is less than 1/n!. When n is larger,
the remainder is still less than n! (a lot less). Thus the remainder approaches
zero. The reason why this argument makes sense is that the value of x is
independent of n, so as n gets larger and larger, x stays the same. Therefore
for any x, the power series for sin x converges to sinx.
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2 Radius of Convergence

The idea of a radius of convergence helps us understand the difference be-
tween a power series like the geometric series

1 + x+ x2 + · · ·+ xn + · · · =
∞∑
i=0

xi =
1

1− x, (1)

which converges for all x in the open interval

(−1, 1) = {x1 < x < 1},

and a power series like

sinx = x− x3

3!
+
x5

5!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
· · · =

∞∑
i=0

x2i+1

(2i+ 1)!
, (2)

which we just saw converges for all real numbers x. In other words, it con-
verges for all x in the open interval

(−∞,∞) = {x|x is a real number}.

The two intervals we have mentioned are called the intervals of convergence
of the power series. We also say the radius of convergence of Equation 1 is 1
and the radius of convergence of Equation 2 is ∞.

In the book by Calculus (p554, Theorem 17), Adams shows why for each
power series, it converges at only one point, or it converges for all points inside
an interval (a−R, a+R) and diverges for all points outside the corresponding
closed interval [a−R, a+R]. The number R is called the radius of convergence
of the power series. There is a theorem that gives us a way to find out the
radius of convergence of many different power series. When it applies, this
theorem also substitutes for Theorem 17 in Adams book. We state it and
show how to use it before developing the tools we need to prove it.

Theorem 1 Radius of Convergence Theorem. If limn→∞ |an+1/an| exists
and equals the nonnegative number L, then the power series

∑∞
i=0 ai(x − a)i

converges for all x in the open interval (a− 1
L
, a+ 1

L
) and diverges for all x

outside the closed interval [a− 1
L
, a+ 1

L
].
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Notice that the theorem says nothing about what happens at the end-
points of the interval. We call the open interval in the Theorem the open
interval of convergence of the power series. It turns out it is possible to cook
up examples that do any combination of converging or diverging we would
like at these endpoints. In this course, we are simply going to ignore the
behavior at endpoints of the interval of convergence. Note also that if L = 0,
then we consider 1

L
to be ∞, and the interval of convergence is (−∞,∞).

We will use the letter R to stand for 1
L

and call R the radius of convergence
of the power series.

When we apply the theorem to the geometric series, we find because each
ai is one, then L is 1. Therefore R = 1 as well. Notice that the theorem
does not tell us that the geometric series converges to 1

1−x . Surprisingly, it
is possible to cook up functions whose Taylor series converge to something
else, but we won’t encounter such functions in this course.

The Radius of Convergence Theorem as it is stated actually does not
apply to the Taylor series for sinx around zero, because the powers of x go
up by two each time instead of by one as the theorem requires. Alternately,
you might say it does not apply to the series for sinx around zero because
every other ai is zero, so the limit does not exist.

Example 1 What is the radius and open interval of convergence of the
power series ∑

i=0

i2i(x− 1)i?

lim
i→∞
|(i+ 1)2i+1

i2i
| = lim

i→∞
|(1 +

1

i
) · 2| = 2 = L

Therefore R = 1
2

and the open interval of convergence is (1
2
, 3

2
).

More examples of finding the radius of convergence of a power series by
this method may be found on pages 555 and 556 of the book Calculus, by
Robert Adams. We recommend skipping over discussions of how to determine
whether or not a series converges at the endpoints of the interval of conver-
gence unless you have the time to go through the earlier parts of Chapter
9.

We plan to complete this section of notes with a discussion of a proof of
Theorem 1 that does not rely on much of the early discussion in Chapter 9.
With luck the more complete set of notes will be available by sometime on
April 8.
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