1. (a) Find and classify any critical points of $f(x, y)=x^{2}+x+2 y^{2}$ in the region $x^{2}+y^{2}<1$.

ANS:

\qquad .
(b) Find the extreme values of $f(x, y)=x^{2}+x+2 y^{2}$ on the region $x^{2}+y^{2} \leq 1$.

The maximum is \qquad which occurs at the point(s) \qquad .

The minimum is \qquad which occurs at the point(s) \qquad .
2. (a) Find the general solution to $y^{\prime \prime}+4 y^{\prime}+4 y=0$.

$$
y(x)=
$$

\qquad
(b) Given that $y_{p}(x)=x$ is a solution to the nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+4 y=f(x) \tag{†}
\end{equation*}
$$

find the solution to (\dagger) which satisfies $y(0)=2$ and $y^{\prime}(0)=1$.

$$
y(x)=
$$

\qquad
(c) What is $f(x)$ equal to?

$$
f(x)=
$$

\qquad

Math 8
3. Suppose that $z=f(x, y), x=u v$ and $y=u+3 v$. When $u=2$ and $v=1$, then $\frac{\partial z}{\partial u}=-2$ and $\frac{\partial z}{\partial v}=-1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$
\begin{aligned}
& \frac{\partial z}{\partial x}= \\
& \frac{\partial z}{\partial y}= \\
&
\end{aligned}
$$

4. (a) Find the equation of the plane containing the three points $(1,1,1),(2,3,2)$ and $(2,0,3)$.

ANS: \qquad
(b) Find parametric equations for the line of intersection of the planes $x+2 y+2 z=1$ and $-x+y-8 z=2$.

$$
\begin{aligned}
& x= \\
& y= \\
& z=
\end{aligned}
$$

\qquad

Math 8
5. Find all solutions to the system of equations

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}-x_{4} & =1 \\
x_{1}-x_{3}+2 x_{4} & =1 \\
x_{2}+x_{3}+x_{4} & =3 \\
2 x_{1} \quad+x_{3}+2 x_{4} & =5
\end{aligned}
$$

What kind of geometric object in four-dimensional space is the set of all solutions to the system of equations? (Be as specific as you can, but be brief!)

Math 8
6. Find the minimum of $f(x, y, z)=x^{2}+y^{2}+2 z^{2}$ on the plane $x+y+z=2$.
\qquad which occurs at \qquad
7. The temperature at the point (x, y, z) is given by $T(x, y, z)=x y^{2}+y z^{2}$. You are located at $(1,1,1)$.
(a) If you move in the direction $\mathbf{u}=\frac{1}{\sqrt{3}}(1,-1,1)$, then does your temperature increase, decrease of stay the same? Explain.

ANS: \qquad
(b) In what direction should you head so that your temperature decreases as rapidly as possible?

ANS: \qquad
(c) What is your maximum rate of cooling in part (b)?

ANS: \qquad
8. MULTIPLE CHOICE. Circle the correct response. There will be no partial credit and you do not have to show your work.
(a) The MacLaurin Series for $f(x)=e^{x}$ is
A. $\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{2 n+1}}{(2 n+1)!}$
B. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
C. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
D. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n!}$
E. None of These
(b) The MacLaurin Series for $f(x)=\cos x$ is
A. $\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{2 n+1}}{(2 n+1)!}$
B. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
C. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
D. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n!}$
E. None of These
(c) The MacLaurin Series for $f(x)=x e^{-x}$ is
A. $\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{2 n+1}}{(2 n+1)!}$
B. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
C. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
D. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n!}$
E. None of These
(d) Suppose that P is parallelogram with vertices at $(1,1,1),(2,3,4)$ and $(2,4,3)$. The
fourth vertex is
A. $(0,0,0)$
B. $(3,6,6)$
C. $(3,6,7)$
D. $(4,5,6)$
E. None of These
(e) The function $f(x, y)=2 x^{3}-6 x y+3 y^{2}$ has a critical point at $(1,1)$. At $(1,1), f$
A. local minimum
B. local maximum
C. saddle point
D. singularity
E. None of These
(f) The tangent plane to the surface $z=x^{2} y+x y^{2}$ at the point $(1,2,6)$ is
A. $8 x+5 y=12$
B. $x+2 y-z=6$
C. $8 x+5 y-z=12$
D. $2 x+y+z=6$
E. None of These
(g) Suppose that $\frac{d y}{d x}=-\frac{x}{y}$ and $y(0)=2$. Then $y(1)=$
A. 0
B. 1
C. $\sqrt{2}$
D. $\sqrt{3}$
E. 2
(h) The general solution to $y^{\prime}+3 y=e^{x}$ is
A. $\frac{1}{4}+C e^{3 x}$
B. $\frac{1}{4} e^{x}+C$
C. $\frac{1}{4}+C e^{-3 x}$
D. $\frac{1}{4} e^{x}+C e^{-3 x}$

E. None of These

(i) The radius of convergence of the power series $\sum_{n=0}^{\infty} 2^{n} x^{n}$ is
A. 0
B. 2
C. $\frac{1}{2}$
D. ∞
E. None of These
(j) Suppose that $A=\left(\begin{array}{rrrr}1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 2\end{array}\right)$. Then the number of parameters in a general solution for equation $A \mathrm{x}=\mathbf{0}$ is
A. 1
B. 2
C. 3
D. 4
E. None of These

