Show Your Work!

Page 1 of 9

1. (a) Find and classify any critical points of $f(x, y) = x^2 + x + 2y^2$ in the region $x^2 + y^2 < 1$.

ANS: _____.

(b) Find the extreme values of $f(x, y) = x^2 + x + 2y^2$ on the region $x^2 + y^2 \le 1$.

The maximum is ______ which occurs at the point(s) _____.

The minimum is ______ which occurs at the point(s) ______.

2. (a) Find the general solution to y'' + 4y' + 4y = 0.

y(x) =_____.

- (b) Given that $y_p(x) = x$ is a solution to the nonhomogeneous equation
 - (†) y'' + 4y' + 4y = f(x),

find the solution to (†) which satisfies y(0) = 2 and y'(0) = 1.

y(x) =_____.

(c) What is f(x) equal to?

$$f(x) = ____.$$

3. Suppose that z = f(x, y), x = uv and y = u + 3v. When u = 2 and v = 1, then $\frac{\partial z}{\partial u} = -2$ and $\frac{\partial z}{\partial v} = -1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

4. (a) Find the equation of the plane containing the three points (1, 1, 1), (2, 3, 2) and (2, 0, 3).

ANS: _____

(b) Find parametric equations for the line of intersection of the planes x + 2y + 2z = 1 and -x + y - 8z = 2.

- *x* = _____
- *y* = _____
- *z* = _____

5. Find all solutions to the system of equations

$$x_{1} - x_{2} + x_{3} - x_{4} = 1$$

$$x_{1} - x_{3} + 2x_{4} = 1$$

$$x_{2} + x_{3} + x_{4} = 3$$

$$2x_{1} + x_{3} + 2x_{4} = 5$$

What kind of geometric object in four-dimensional space is the set of all solutions to the system of equations? (Be as specific as you can, but be brief!)

Math 8

6. Find the minimum of $f(x, y, z) = x^2 + y^2 + 2z^2$ on the plane x + y + z = 2.

The minimun is ______ which occurs at _____.

7. The temperature at the point (x, y, z) is given by $T(x, y, z) = xy^2 + yz^2$. You are located at (1, 1, 1).

(a) If you move in the direction $\mathbf{u} = \frac{1}{\sqrt{3}}(1, -1, 1)$, then does your temperature increase, decrease of stay the same? Explain.

ANS: _____.

(b) In what direction should you head so that your temperature decreases as rapidly as possible?

ANS: _____.

(c) What is your maximum rate of cooling in part (b)?

ANS: _____.

8. MULTIPLE CHOICE. Circle the correct response. There will be no partial credit and you do not have to show your work.

- The MacLaurin Series for $f(x) = e^x$ is (a) **A**. $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$ **B**. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ **C**. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ **D.** $\sum_{n=1}^{\infty} (-1)^n \frac{x^{n+1}}{n!}$ **E.** None of These The MacLaurin Series for $f(x) = \cos x$ is (b) **A**. $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$ **B**. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ **C**. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ **D**. $\sum_{n=1}^{\infty} (-1)^n \frac{x^{n+1}}{n!}$ **E**. None of These The MacLaurin Series for $f(x) = xe^{-x}$ is (c) A. $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$ B. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ C. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ **D.** $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n!}$ **E.** None of These
- (d) Suppose that \overline{P} is parallelogram with vertices at (1, 1, 1), (2, 3, 4) and (2, 4, 3). The fourth vertex is

A. (0,0,0) **B**. (3,6,6) **C**. (3,6,7) **D**. (4,5,6)

E. None of These

(e) The function
$$f(x, y) = 2x^3 - 6xy + 3y^2$$
 has a critical point at (1, 1). At (1, 1), f
has a
A. local minimum B. local maximum C. saddle point
D. singularity E. None of These
(f) The tangent plane to the surface $z = x^2y + xy^2$ at the point (1, 2, 6) is
A. $8x + 5y = 12$ B. $x + 2y - z = 6$ C. $8x + 5y - z = 12$
D. $2x + y + z = 6$ E. None of These
(g) Suppose that $\frac{dy}{dx} = -\frac{x}{y}$ and $y(0) = 2$. Then $y(1) =$
A. 0 B. 1 C. $\sqrt{2}$ D. $\sqrt{3}$ E. 2
(h) The general solution to $y' + 3y = e^x$ is
A. $\frac{1}{4} + Ce^{3x}$ B. $\frac{1}{4}e^x + C$ C. $\frac{1}{4} + Ce^{-3x}$ D. $\frac{1}{4}e^x + Ce^{-3x}$
E. None of These
(i) The radius of convergence of the power series $\sum_{n=0}^{\infty} 2^n x^n$ is
A. 0 B. 2 C. $\frac{1}{2}$ D. ∞ E. None of These
(j) Suppose that $A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 2 \end{pmatrix}$. Then the number of parameters in a general solution for equation $A\mathbf{x} = 0$ is
A. 1 B. 2 C. 3 D. 4 E. None of These