Show Your Work!

1. (a) Find and classify any critical points of $f(x, y) = x^2 + x + 2y^2$ in the region $x^2 + y^2 < 1$. **ANS**: $\frac{\partial f(x, y)}{\partial x} = 2x + 1$; $\frac{\partial f(x, y)}{\partial y} = 4y$. Therefore the only critical point is where 2x + 1 = 0 and 4y = 0, so x = -1/2 and y = 0. At this point $f(x, y) = \frac{1}{4} - \frac{1}{2} + 0 = -\frac{1}{4}$ (to be used later). We have A = 2, B = 0, and C = 4, so $B^2 < AC$ and A > 0 so the critical point is a local minimum

ANS: $\left(-\frac{1}{2}, 0\right)$, local minimum.

(b) Find the extreme values of $f(x, y) = x^2 + x + 2y^2$ on the region $x^2 + y^2 \le 1$.

ANS: Setting $\nabla f(x,y) = \lambda \nabla (x^2 + y^2)$, we obtain $(2x + 1) = \lambda 2x$ and $4y = \lambda 2y$. The constraint is $x^2 + y^2 = 1$. We thus have $(2\lambda - 2)x = 1$ and $(4 - 2\lambda)y = 0$. The second equation says that either y = 0 or else $\lambda = 2$. If y = 0, then $x = \pm 1$, by the equation of the circle. If $\lambda = 2$, then $x = \frac{1}{2}$, and by the equation of the circle, $y = \pm \frac{\sqrt{3}}{2}$. Our constrained critical points are thus $(\pm 1, 0), (\frac{1}{2}, \pm \frac{\sqrt{3}}{2})$. We have f(1,0) = 2, f(-1,0) = 0 and $f(\frac{1}{2}, \pm \frac{\sqrt{3}}{2}) = \frac{9}{4}$. We compare these values with the value $\frac{-1}{4}$ at the critical point found in part (a).

The maximum is 9/4 which occurs at the points $(\frac{1}{2}, \pm \frac{\sqrt{3}}{2})$. The minimum is -1/4 which occurs at the points $(-\frac{1}{2}, 0)$.

2. (a) Find the general solution to y'' + 4y' + 4y = 0. **ANS**: The auxilliary equation is $r^2 + 4r + 4 = (r+2)^2 = 0$, so r = -2, and therefore $y = C_1 e^{-2x} + C_2 x e^{-2x}$.

$$y(x) = C_1 e^{-2x} + C_2 x e^{-2x}.$$

(b) Given that $y_p(x) = x$ is a solution to the nonhomogeneous equation

(†)
$$y'' + 4y' + 4y = f(x),$$

find the solution to (\dagger) which satisfies y(0) = 2 and y'(0) = 1.

ANS: $y(x) = C_1 e^{-2x} + C_2 x e^{-2x} + x$, so $y' = -2C_1 e^{-2x} - 2xC_2 e^{-2x} + C_2 e^{-2x} + 1$. Substituting in the initial conditions gives us $C_1 = 2$ and $-2C_1 + C_2 = 0$, which gives us $C_2 = 4$.

$$y(x) = 2e^{-2x} + 4xe^{-2x} + x .$$

(c) What is f(x) equal to?

ANS: Substituting y = x into Equation (†) gives 4x + 4.

Math 8

Page 1 of 6

$$f(x) = 4x + 4 \; .$$

3. Suppose that z = f(x, y), x = uv and y = u + 3v. When u = 2 and v = 1, then $\frac{\partial z}{\partial u} = -2$ and $\frac{\partial z}{\partial v} = -1$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. **ANS**: $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} = -2$, or $\frac{\partial z}{\partial x}v + \frac{\partial z}{\partial y} \cdot 1 = -2$, and since v = 1, this gives $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = -2$. Similarly $\frac{\partial z}{\partial x} \cdot 2 + \frac{\partial z}{\partial y} \cdot 3 = -1$. Solving these equations gives

$$\frac{\frac{\partial z}{\partial x} = -5}{\frac{\partial z}{\partial y} = 3}.$$

4. (a) Find the equation of the plane containing the three points (1, 1, 1), (2, 3, 2) and (2, 0, 3).
ANS: To get a normal to the plane, we take the cross product of (2, 3, 2) - (1, 1, 1) = (1, 2, 1) and (2, 0, 3) - (1, 1, 1) = (1, -1, 2).

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 1 & -1 & 2 \end{vmatrix} = 5\mathbf{i} - \mathbf{j} - 3\mathbf{k}.$$

The equation of the plane is

$$(x - 1, y - 1, z - 1) \cdot (5, -1, -3) = 5(x - 1) - 1(y - 1) - 3(z - 1) = 0,$$

or

ANS: 5x - y - 3z = 1

(b) Find parametric equations for the line of intersection of the planes x + 2y + 2z = 1 and -x + y - 8z = 2.

 \mathbf{ANS} :

$$\begin{bmatrix} 1 & 2 & 2 & | & 1 \\ -1 & 1 & -8 & | & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 3 & -6 & | & 3 \\ -1 & 1 & -8 & | & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & -2 & | & 1 \\ 1 & -1 & 8 & | & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & -2 & | & 1 \\ 1 & 0 & 6 & | & -1 \end{bmatrix},$$
so $x = -1 - 6t, y = 1 + 2t$, and $z = t$.

Math 8

 $\frac{x = -1 - 6t}{y = 1 + 2t}$ $\frac{z = t}{z = t}$

5. Find all solutions to the system of equations

$$x_1 - x_2 + x_3 - x_4 = 1$$

$$x_1 - x_3 + 2x_4 = 1$$

$$x_2 + x_3 + x_4 = 3$$

$$2x_1 + x_3 + 2x_4 = 5$$

What kind of geometric object in four-dimensional space is the set of all solutions to the system of equations? (Be as specific as you can, but be brief!)

$$\mathbf{ANS:} \quad \begin{bmatrix} 1 & -1 & 1 & -1 & | & 1 \\ 1 & 0 & -1 & 2 & | & 1 \\ 0 & 1 & 1 & 1 & | & 3 \\ 2 & 0 & 1 & 2 & | & 5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 1 & -1 & | & 1 \\ 0 & 1 & -2 & 3 & | & 0 \\ 0 & 1 & 1 & 1 & | & 0 \\ 0 & 2 & -1 & 4 & | & 3 \\ 0 & 2 & -1 & 4 & | & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & | & 4 \\ 0 & 0 & -3 & 2 & | & -3 \\ 0 & 1 & 1 & 1 & | & 3 \\ 0 & 0 & -3 & 2 & | & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & | & 4 \\ 0 & 0 & 1 & \frac{-2}{3} & | & 4 \\ 0 & 1 & 1 & 1 & | & 3 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 & 0 & | & 4 \\ 0 & 0 & 1 & \frac{-2}{3} & | & 4 \\ 0 & 1 & 1 & 1 & | & 3 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{4}{3} & | & 2 \\ 0 & 0 & 1 & \frac{-2}{3} & | & 1 \\ 0 & 1 & 0 & \frac{5}{3} & | & 2 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Therefore, $x_1 = 2 - \frac{4}{3}t$, $x_2 = 2 - \frac{5}{3}t$, $x_3 = 1 + \frac{2}{3}t$, $x_4 = t$ is the general solution to the system of equations. The set of all solutions is a line, the line through the point (2,2,1,0) with direction vector $\left(-\frac{4}{3}, -\frac{5}{3}, \frac{2}{3}, 1\right)$.

6. Find the minimum of $f(x, y, z) = x^2 + y^2 + 2z^2$ on the plane x + y + z = 2.

ANS: Setting $\nabla(x^2 + y^2 + 2z^2) = \lambda \nabla(x + y + z)$ gives $2x = \lambda$, $2y = \lambda$, $4z = \lambda$. Thus x = y and z = y/2. Since x + y + z = 2, this gives us x = 4/5, y = 4/5, z = 2/5, at which point $x^2 + y^2 + 2z^2 = 8/5$. Since f is large for values of x, y and z such that at least one is large in absolute value, f must have a minimum somewhere on this plane. Therefore the point we have found is the only possible point at which this minimum can occur.

The minimum is 8/5 which occurs at (4/5, 4/5, 2/5).

7. The temperature at the point (x, y, z) is given by $T(x, y, z) = xy^2 + yz^2$. You are located at (1, 1, 1).

(a) If you move in the direction $\mathbf{u} = \frac{1}{\sqrt{3}}(1, -1, 1)$, then does your temperature increase, decrease or stay the same? Explain.

ANS: $\nabla T = y^2 \mathbf{i} + (2xy + z^2)\mathbf{j} + 2yz\mathbf{k} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ at (1,1,1). Since $(1,3,2) \cdot (1,-1,1)/\sqrt{3} = 0$, the temperature does not change.

ANS: Stays the same.

(b) In what direction should you head so that your temperature decreases as rapidly as possible?

ANS: $-\nabla T = -\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$

ANS: $(-i - 3j - 2k)/\sqrt{14}$. (A unit vector is not really necessary here.)

(c) What is your maximum rate of cooling in part (b)?

ANS: $\sqrt{14}$.

8. MULTIPLE CHOICE. Circle the correct response. There will be no partial credit and you do not have to show your work.

(a) The MacLaurin Series for $f(x) = e^x$ is **A.** $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$ **B.** $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ **C.** $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ **D.** $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n!}$ **E.** None of These

ANS: B

(b) The MacLaurin Series for $f(x) = \cos x$ is

Page 5 of 6

A.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$$
 B. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ C. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
D. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n!}$ E. None of These
ANS: C
(c) The MacLaurin Series for $f(x) = xe^{-x}$ is
A. $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$ B. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ C. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$
D. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n!}$ E. None of These

ANS: D

(d) Suppose that P is parallelogram with vertices at (1, 1, 1), (2, 3, 4) and (2, 4, 3). The fourth vertex is

A. (0,0,0) **B**. (3,6,6) **C**. (3,6,7) **D**. (4,5,6)

E. None of These

ANS: B

(e) The function
$$f(x,y) = 2x^3 - 6xy + 3y^2$$
 has a critical point at (1,1). At (1,1), f has a

A. local minimum B. local maximum C. saddle point

D. singularity **E**. None of These

ANS: A

(f) The tangent plane to the surface
$$z = x^2y + xy^2$$
 at the point $(1, 2, 6)$ is

Math 8

Math 8

Page 6 of 6

A.
$$8x + 5y = 12$$
 B. $x + 2y - z = 6$ C. $8x + 5y - z = 12$
D. $2x + y + z = 6$ E. None of These
ANS: C
(g) Suppose that $\frac{dy}{dx} = -\frac{x}{y}$ and $y(0) = 2$. Then $y(1) =$
A. 0 B. 1 C. $\sqrt{2}$ D. $\sqrt{3}$ E. 2
ANS: D
(h) The general solution to $y' + 3y = e^x$ is
A. $\frac{1}{4} + Ce^{3x}$ B. $\frac{1}{4}e^x + C$ C. $\frac{1}{4} + Ce^{-3x}$ D. $\frac{1}{4}e^x + Ce^{-3x}$
E. None of These
ANS: D
(i) The radius of convergence of the power series $\sum_{n=0}^{\infty} 2^n x^n$ is
A. 0 B. 2 C. $\frac{1}{2}$ D. ∞ E. None of These
ANS: C
(j) Suppose that $A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 1 & 2 \end{pmatrix}$. Then the number of parameters in a general solution for equation $Ax = 0$ is
A. 1 B. 2 C. 3 D. 4 E. None of These