SOLVING LINEAR HOMOGENEOUS SECOND-ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

In these notes, we will consider differential equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b and c are constants.
Notation. We can obtain surprising insight into the differential equation by using the notation $\mathbf{D} y$ to mean y^{\prime} and $\mathbf{D}^{2} y$ to mean $y^{\prime \prime}$. In other words, \mathbf{D} denotes the derivative operator $\frac{d}{d x}$ and is called a differential operator. We will write expressions such as $\left(5 \mathbf{D}^{2}+2 \mathbf{D}+7\right) y$ to mean $5 \mathbf{D}^{2} y+2 \mathbf{D} y+7 y=5 y^{\prime \prime}+2 y^{\prime}+7 y$.

How does this new notation help us understand the differential equation. Let's look at an example.

Example 1..

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Writing the equation in the form

$$
\left(\mathbf{D}^{2}-3 \mathbf{D}+2\right) y=0
$$

we find ourselves tempted to factor the expression $\mathbf{D}^{2}-3 \mathbf{D}+2$, writing the equation as

$$
\begin{equation*}
(\mathbf{D}-2)(\mathbf{D}-1) y=0 . \tag{2}
\end{equation*}
$$

Does this really make sense? Let's see. First, we know that

$$
\begin{equation*}
(\mathbf{D}-1) y=y^{\prime}-y \tag{3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
(\mathbf{D}-2)(\mathbf{D}-1) y=(\mathbf{D}-2)\left(y^{\prime}-y\right)=\mathbf{D}\left(y^{\prime}-y\right)-2\left(y^{\prime}-y\right) \tag{4}
\end{equation*}
$$

Since $\mathbf{D}\left(y^{\prime}-y\right)$ means differentiate $y^{\prime}-y$, we see that $\mathbf{D}\left(y^{\prime}-y\right)=y^{\prime \prime}-y^{\prime}$. Thus equation (4) gives us

$$
(\mathbf{D}-2)(\mathbf{D}-1) y=y^{\prime \prime}-y^{\prime}-2\left(y^{\prime}-y\right)=y^{\prime \prime}-3 y^{\prime}+2 y
$$

sOLVING LINEAR HOMOGENEOUS SECOND-ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT C

in agreement with the original expression in (1). Thus factoring the differential operator $\mathbf{D}^{2}-3 \mathbf{D}+2$ does make sense.

From equation (2), we can see that any solution $y(t)$ of the differential equation

$$
\begin{equation*}
(\mathbf{D}-1) y=0 \tag{5}
\end{equation*}
$$

must also be a solution of equation (2), equivalently equation (1). But we know how to solve equation (5) already. Rewriting this equation as $y^{\prime}-y=0$ or $y^{\prime}=y$, the solution is

$$
\begin{equation*}
y=C_{1} e^{t} \tag{6}
\end{equation*}
$$

where C_{1} is an arbitrary constant.
Now we could have just as easily rewritten our differential equation (1) in the form

$$
\begin{equation*}
(\mathbf{D}-1)(\mathbf{D}-2) y=0 \tag{7}
\end{equation*}
$$

From this expression, we immediately see that any solution $y(t)$ of $(\mathbf{D}-2) y=0$ is also a solution of (1). Again this equation can be rewritten as $y^{\prime}-2 y=0$, or $y^{\prime}=2 y$, giving us the solution

$$
\begin{equation*}
y=C_{2} e^{2 t} \tag{8}
\end{equation*}
$$

Since the differential equation is homogeneous, we can combine these solutions to obtain solutions of the form

$$
\begin{equation*}
y=C_{1} e^{t}+C_{2} e^{2 t} \tag{9}
\end{equation*}
$$

What is the advantage of viewing the differential equation in this way? After all, we already know another way of solving this equation by guessing a solution of the form $e^{r t}$ and finding r. Let's consider the following example:

Example 2. Consider the differential equation $y^{\prime \prime}-4 y^{\prime}+4 y=0$. If we guess a solution of the form $y=e^{r t}$, we find that $r^{2}-4 r+4=0$, so $(r-2)^{2}=0$. This gives us only the solution $y=e^{r t}$. We can multiply this solution by an arbitrary constant, but we're still missing a second independent solution. Now let's write our equation in the form $\left(\mathbf{D}^{2}-4 \mathbf{D}+4\right) y=0$ or

$$
\begin{equation*}
(\mathbf{D}-2)^{2} y=0 \tag{10}
\end{equation*}
$$

We seem to run into the same problem. We see that any solution of $(\mathbf{D}-2) y=0$ is a solution to our original equation, but this still just gives us $y=C_{1} e^{r t}$. How do we find another solution?

Let's consider a more familiar equation: $y^{\prime \prime}=0$, i.e., $\mathbf{D}^{2} y=0$. If we let $v=y^{\prime}(=\mathbf{D} y)$, then we must have $v^{\prime}=0$ and thus $v=C_{1}$, for some constant
C_{1}. Thus $y^{\prime}=C_{1}$, so $y=C_{1} t+C_{2}$. Note what we've done here. We've replaced $\mathbf{D} y$ by v, thus rewriting $\mathbf{D}^{2} y=0$ as a first order equation $\mathbf{D} v=0$. Once we found v, we could then solve $\mathbf{D} y=v$ for y. Let's do the same thing with equation (10). Let

$$
\begin{equation*}
v=(\mathbf{D}-2) y . \tag{11}
\end{equation*}
$$

Equation (10) tells us that

$$
(\mathbf{D}-2) v=0
$$

We know how to solve this equation: $v^{\prime}-2 v=0$, so $v^{\prime}=2 v$ and

$$
v=C_{1} e^{2 t}
$$

Substituting our solution for v into equation (11), we obtain

$$
(\mathbf{D}-2) y=C_{1} e^{2 t}
$$

or equivalently

$$
\begin{equation*}
y^{\prime}-2 y=C_{1} e^{2 t} \tag{12}
\end{equation*}
$$

Let's solve this linear first order equation by using an integrating factor. We choose u to be an anti-derivative of -2 , say $u=-2 t$ and multiply both sides by $e^{-2 t}$ to obtain

$$
\frac{d}{d t}\left(e^{-2 t} y\right)=C_{1}
$$

(On the right-hand-side, we've replaced $C_{1} e^{2 t} e^{-2 t}$ by C_{1}.) Thus

$$
e^{-2 t} y=C_{1} t+C_{2}
$$

and

$$
y=C_{1} t e^{2 t}+C_{2} e^{2 t}
$$

We have now found a two-dimensional space of solutions. Moreover, we know these are all the solutions since at each stage, we solved a first order equation completely, finding all its solutions.

