
1. Consider the function

f(x) =
∞∑

n=0

(x− 3)n

(n+ 1)2
.

For which values of x is f(x) defined?

Solution: The function f(x) is defined at values of x for which the series converges.

We find the radius of convergence using the ratio test.

lim
n→∞

∣∣∣∣∣
(x−3)
(n+2)2

(x−3)n

(n+1)2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)2(x− 3)

(n+ 2)2

∣∣∣∣ = |x− 3| lim
n→∞

∣∣∣∣(n+ 1)2

(n+ 2)2

∣∣∣∣ = |x− 3|.

The ratio test tells us that the series converges when |x − 3| < 1 and diverges when
|x− 3| > 1.

When |x−3| = 1 the ratio test fails, and we have to try something else. For x−3 = 1,
or x = 4, we have

∞∑
n=0

(x− 3)n

(n+ 1)2
=
∞∑

n=0

1

(n+ 1)2
,

which converges because it is a p-series with p = 2. For x− 3 = −1, or x = 2, we have

∞∑
n=0

(x− 3)n

(n+ 1)2
=
∞∑

n=0

(−1)n

(n+ 1)2
,

which converges by the alternating series test. It also converges because it converges
absolutely.

Therefore the series converges, and f(x) is defined, when |x−3| ≤ 1, or when 2 ≤ x ≤ 4.
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2. (a) What is the Maclaurin series (the Taylor series about x = 0) for the function
f(x) = ex?

You do not need to show any work for this part of the problem, so if you remember
the answer, you can just write it down.

Solution:
∞∑

n=0

xn

n!
.

(b) Find the Maclaurin series for g(x) = e−x2
.

Solution: Substituting −x2 for x in the Maclaurin series for ex, we get

∞∑
n=0

(−x2)n

n!
=
∞∑

n=0

(−1)nx2n

n!
.

(c) Let F (x) =

∫ x

0

e−t2 dt. Find the first four nonzero terms of the Maclaurin series

for F (x).

Solution: Replacing x by t in the Maclaurin series for e−x2
yields the Macluarin

series for the integrand

e−t2 =
∞∑

n=0

(−t2)n

n!
=
∞∑

n=0

(−1)nt2n

n!

Integrating this power series term-by-term∫
et2 dt = C +

∞∑
n=0

(−1)nt2n+1

(2n+ 1)n!

Evaluating the integral from t = 0 to t = x gives∫ x

0

et2 dt =

[ ∞∑
n=0

(−1)nt2n+1

(2n+ 1)n!

]∣∣∣∣∣
t=x

t=0

=
∞∑

n=0

(−1)nx2n+1

(2n+ 1)n!

= x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·

So the first four nonzero terms are

x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
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3. Find the Taylor series for f(x) = ln(x)− ln(3) centered about a = 3.

Solution: Calculating the first few derivatives of f(x), we have

f (0)(x) = ln(x)− ln(3)

f (1)(x) = 1/x

f (2)(x) = −1/x2

f (3)(x) = 2/x3

f (4)(x) = −2 · 3/x4

f (5)(x) = 2 · 3 · 4/x4

we find that if n ≥ 1, then the n-th derivative is f (n)(x) = (−1)n+1(n− 1)!/xn. Hence
Taylor’s formula gives

f(x) =
∞∑

n=0

f (n)(a)

n!
(x− a)n

= f(3) +
∞∑

n=1

f (n)(a)

n!
(x− a)n

= 0 +
∞∑

n=1

(−1)n+1(n− 1)!

3nn!
(x− 3)n

=
∞∑

n=1

(−1)n+1

n3n
(x− 3)n
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4. Suppose that ~a and ~b are two vectors in R3 such that if ~a and ~b are drawn emanating
from the origin they both lie in the xy-plane, ~a in the third quadrant (x < 0 and y < 0)

and ~b in the second quadrant (x < 0 and y > 0).

Suppose also that we know |~a| = 1 and |~b| = 2 and ~a ·~b = 1.

(a) Is the projection of ~b onto ~a longer than ~a, shorter than ~a, or the same length as
~a?

Solution:

If θ is the angle between ~a and ~b, then

|~a| =
√
~a · ~a = 1 |~b| =

√
~b ·~b = 2 cos θ =

~a ·~b
|~a||~b|

=
1

2

The length of the projection of ~b onto ~a is |~b| | cos θ| = 1, so it is the same length
as ~a.

(b) In what direction does ~a×~b point?

Solution:

It must point in a direction normal to both ~a and ~b, that is, normal to the xy-
plane, so either the direction given by k̂ (the positive z direction) or the direction
given by −k̂ (the negative z direction). Looking down from the top (k̂, or positive

z, direction) of the xy-plane we see that from ~a to ~b is a clockwise direction, so
by the right-hand rule, the cross product points in the direction given by −k̂.

(c) Find the length of ~a×~b.
Solution:

If cos θ =
1

2
then sin θ =

√
3

2
(we know it cannot be negative because we always

take θ to be an acute angle) so

|~a×~b| = |~a||~b| sin θ =
√

3
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5. Find an equation for the plane that contains the two lines L1 and L2:

L1 : x = t+ 2 y = 3t− 5 z = 5t+ 1

L2 : x = 5− t y = 3t− 10 z = 9− 2t

Solution: A vector that points in the same direction as L1 is v1 = 〈1, 3, 5〉 and one
that points in the same direction as L2 is v2 = 〈−1, 3,−2〉. Since the plane contains
both lines, a normal vector to the plane must be orthogonal to v1 and v2. We can
construct a normal vector using the cross product:

n = v1 × v2 = det

 î ĵ k̂
1 3 5
−1 3 −2

 = (−6− 15)̂i− (−2 + 5)ĵ + (3 + 3)k̂ = 〈−21,−3, 6〉

Since the plane contains both lines, we can find a point in the plane by finding a point
on either line, using any parameter value of t. Taking t = 0 in the parametric equations
for L1, we know that (2,−5, 1) is contained in the plane. So an equation for the plane
is

〈−21,−3, 6〉 · 〈x− 2, y + 5, z − 1〉 = 0

or

−21x− 3y + 6z + 21 = 0.
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