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PATHS, TREES, AND FLOWERS
JACK EDMONDS
1. Introduction. A graph G for purposes here is a finite st of clements

called tertices and a finite set of elements called edges such that each edge
meets exactly two vertices, called the end-points of the edge. An edge is said

edges such that no two meet the same

vertex. We describe an efficient algorithm for finding in a given graph a match-

ing of maximum cardinality. This problem was posed and partly solved by
Berge; see Sec 3

ximum matching is an aspect of a_topic, treated in books on graph
theory, which has developed during th 75 years through the work of
n authors. In particular, W. T. Tutte (8) characterized U.pn,
which do not contain a perfect matehing, or I-faclor as he calls it—that s a
exactly one member meeting cach vertes. His theorem
prompted attempts at finding an efficient construction for perfect matchings.
This and our two subsequent papers will be closely related to other work on
the topic. Most of the known theorems follow nicely from our treatment,
though for the most part they are not um!«l c‘fpl itly. Our treatment is
.mu.mdcm and 50 10 background reading is necessary.
Section 2 the meaning of
Section 3 discusses ideas of Berge, Nor with a new proof of
Berge's theorem. Section 4 presents the bulk of the matching A\\gonlhm
Section 7 discusses some refinements of it
e combi \v.orml linear theory related on the one hand
d on the other hand to linear programming.
iewpoints, by Ford and Fulkerson in (5) and
by A. ]. Hoffman in (6). They mention the problem of extending this relation-
ship to non-bipartite graphs. Section 5 does this, or at least begins to do it.
There, the Konig theorem is generalized to a matching-duality theorem for
rbitrary graphs. This theorem mmediately suggests a polyhedron which in a
subsequent paper (4) is shown to be the convex hull of the vectors associated
gs in a graph.
nnul ng in non- blp.lrnlc graphs is at present unusual among
atorial extremum problems in that it is very tractable and yet not of
imodulor” type described ! and 6)

Received Novenber 22, 1963, Supported by the ONR. Logiics Projct at Priceton
Universty and the A-R.0.D. Combinatorial Mathematics Project ¢ N.
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Finding a perfect matching is easy



Canadian Journal of Mathematics, 17: 449-467, 1965

PATHS, TREES, AND FLOWERS
JACK EDMONDS

1. Introduction. A graph G for purposes here is a finite st of clements
called sertices and a finite set of elements called edges such that each edge
meets exactly two \mice«, called the end-points of the edge. An edge is said

o join its end-point:

3 mulrhmg in G is a subsct of its edges such that no two meet the same
vertex. We describe an efficient .\|g)r\(|m| for finding in a given graph a match-
fog of 1 maximum card This problem was posed and partly solved by
C. Berge; see Sect om 57 and 35,

Maximum matching is an aspect of a tovi treated in books on graph
theory, which has developed during the last 75 years through the work of
about a do athors. In particular, W. T. Tutte (8)
2 a perfect matching, or I-factor as he calls it—that is a
cach vertex. His theorem

characterized graphs

which do not conta
set of cdges with exactly one member meet
rompted attempts at finding an efiicient ct
is and our two subsequent papers will be cl
the topic. Most of the known theor:
though for the most part they are not treated ex
independent and so ground reading is ne
ction 2is.a phil ! he meaning of
Section 3 discusses ideas of Berge, Norman, and Rabin with a new proof of
Berge's theorem. Section 4 presents the bulk of the matching algorithm.
Section 7 discusses some refinements of it
ere is an extensive combinatorial-linear theory related on the on hnud
mnnu'l\ e raphs and on the other hand to linear programming.
points, by Ford and Fulkerson in (5) and
by A. T Voftman in (). mention ;m- pmblcm of ext lation
ship to non-bipartite graph his, or at least begins to do it.
There, the Konig theorem is g unlmd to a matching-duality heorem for
arbitrary graphs. theorem jmmediately suggests a polyhedron which in a
subsequent paper (4) hown to be the convex hull of the vectors associated

at present unusual among
ot of

hing in non-bipartite grap
tor I(-xlruuum problems in that it is very tractable and
the “unimodular” type described in (5 and 6).

d N 2, 1908 Supported by the ON.R. Logistcs Projct at Priceton
Universty and the AR.O.D. Combinatorial Mathematics Project

49

THE COMPLEXITY OF COMPUTING THE PERMANENT

L.G. VALIANT
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Abstract.
e of coumig prblems smociued vk somdieminiaicpoyamial e compusions
their

nctrivial e of arithmetic

Introduction

Let A be an n xr. matrix. The permanent of A is defined as
Perm A=Y [] Avoy
cim

where the summation is over the ! permutations of (1,2, ..., n). It the same as
the determinant exczpt that all the terms have positive sign. Despite this similarity,
while there are efiicient algorithms for computing the determinant all known
methods for evaluating the permanent take exponential time. This discrepancy is
aancyingly obvious evenfor smal maties, an s ben noted repetedly i the

whether the permanent could u reduced to the determinant via some simple
‘matrix transformation. The results have always been negative, except in certain
special cases [12, 13, 16].

“The aim of this paper i pe by
showing that it is “complete” as far as counting problems. The results can be
summarized informally as follows:

Theorem 1. The complexity of computing the permanent of n X (0, 1)-matrices is
NP-hard (3, 11) and, in fact, of at least as great diffculty (to within a poiynomial
factor) as that of counting the number of accepting computations of any nondeter-
‘ministic polynomial time Turing machine.

189

Counting matchings is hard

Finding a perfect matching is easy (#P-complete)
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It s well-known that the computa-
tion of the permanent of 0-1 matrices, which is
iputing the number of matchi

it is the leading candidate for a problem for which
one solution can be found in polynomial time, but

ries in every row and every column are I's.

The o alorthm e o Mackorchintht con.

verges to the uniform distribution on the space of

erfect mudml’l for any given graph. We show

that i comverges in polynomil ime (in terme
¢) for all de h

tion of the permanent of such matrices is stil #P-
complete.

1. Introduction

One of the most surprising results in computa-
tional complexity is that computing the number

Permision 10 copy without fc all o par of this materal s raned
provided ha the copis are not made or disrbed for direct
Commrcal dvag. e ACM copyigh s e e of e
publcation and s date appear. s o opiog
Permasion o the Asiocarion !u(umymm[M nery. To copy
eruer o 10 P e 6 ] f st prmimion.
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of perfect matchings in a bipartite graph is #P-
complete, that is, as hard as computing the num-
ber of solutions of any problem in NP |v.|,m19|
In other words although finding @ perfect m:

o ey and fnding o Hamilonien circuit i hard,
counting perfect matchings and counting Hamil-
tonian circuits is .q-my

The number of matchings in a bipartite
.,..,nc(v.,v,,s)--m Wil = val = nmaEC
Vix Vs computing the nt
of s oquare 01 matetx M = () of st whers

ma= (s SASE

and the permanent of M, per(M) is defined by
per(M) =32 ] mecos
T 1sisn

s @ range over Al the permstations of the
set {1,...,n}.

‘The permanent function has a long and noble his-
by Cauchy in 1812 in its
‘memoir on determinants and almost
ksnsouly by Baet, (Ses [MiacTs fr denaied
history.) It has important applications in statisti-
cl pysicsand chemisiry and plys »central role
in many enumeration and linear algebra prol

Despite many efforts, the fastest known algorithm
for the exact computation of the permanent re-

ires O(n2") operations. (It is based on Ryser's
formula [Ryser63]. See [NWTS] for implementa-
tion.) Some of the difficulty seems to reside in the
fact that although the permanent is closely related

to the determinant, it lacks the symmetries of the



Errata to
“How hard is it to marry at random?
(On the approximation of the permanent)” [1]

Andrei Broder
DEC ~ SRC, 130 Lytton Ave., Palo Alto, CA 94301

The coupling argument used in the proof of Theorem 8 (the rapid convergence of the
Markov chain MC1) as sketched in Appendix A, is incorrect. Recently however, M. Jerrum
and A. Sinclair [2] showed by an entirely different method that MC1 is indeed rapidly
converging (that is, the variation distance becomes less than ¢ in time polynomial in n,
1/e, and the ratio Mp_1/M,.) Therefore the approximation scheme for the permanent of
dense graphs works in polynomial time, as stated.

The flaw in the original proof comes from the fact that although the distribution of a
card in the queue of moves for some position is uniform at the time of its insertion, it is not
necessarily uniform at the time of its removal. This was first observed by M. Mihail [3].

[1] Proceedings of the 18-th Annual ACM Symposium on Theory of Computing, 1986, 50-58.
[2] M. Jerrum and A. Sinclair, “Conductance and the Rapid Mixing Property for Markov
Chains: The Approximation of the Permanent resolved,” Proceedings of the 20-th Annual
ACM Symposium on Theory of Computing, 1988,

[3] M. Mihail, “The approximation of the permanent is siill open,” manuscript, Aiken
Computation Laboratory, Harvard University, 1987.
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