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E x t e n d e d  a b s t r a c t  

A b s t r a c t .  I t  is well-known tha t  the computa-  
tion of the pe rmanen t  of 0-1 matrices,  which is 
the same as comput ing the number  of matchings 
in bipar t i te  graph, is #P-comple t e .  However the 
complexity of comput ing a good approximat ion of 
the number  of matchings,  is an open question and 
it is the leading candidate for a problem for which 
one solution can be found in polynomial  time, but  
for which even approximat ing  the number  of solu- 
tions is hard. In this paper  we present a fully poly- 
nomial  (e, 6) -approximat ion scheme for the per- 
manent  of 0-1 matr ices where at least half of the 
entries in every row and every column are l ' s .  

The novel a lgori thm uses a Markov chain tha t  con- 
verges to the uniform distr ibution on the space of 
perfect matchings for any given graph. We show 
tha t  it converges in polynomial  t ime (in terms 
of the variat ion distance) for all dense enough 
graphs. Based on this chain we construct a sam- 
pling scheme tha t  allows us to approximate  the 
permanent  of dense 0-1 matrices in polynomial  
time. Finally we show tha t  the exact computa-  
tion of the pe rmanen t  of such matrices is still ~ P -  
complete.  

1. I n t r o d u c t i o n  

One of the most  surprising results in computa-  
t ional  complexity is tha t  comput ing the number  

Permission to copy without tee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1986 ACM 0-89791-193-8/86/0500/0050 $00.75 

of perfect matchings in a bipar t i te  graph is ~ P -  
complete,  t ha t  is, as hard as comput ing  the num- 
ber of solutions of any problem in NP [Valiant79]. 
In other words al though finding a perfect matching 
is easy and finding a Hamil tonian  circuit is hard, 
counting perfect matchings and counting Hamil-  
tonian circuits is equally hard. 

The number  of perfect matchings  in a bipar t i te  
graph G(Vx,V2, E) where ]VI [=  IV2[ = n and E c 
VI × V2 is the same as comput ing  the permanent 
of a square 0-1 ma t r ix  M = (m~d) of size n where 

1, E; 
m~,y = O, otherwise, 

and the permanent  of M,  p e r ( M )  is defined by 

p e r ( M ) = Z  H m~,~(0' 
l<_i_<n 

where ¢r ranges over all the permuta t ions  of the 
set (1, . . . ,  n). 

The permanent  function has a long and noble his- 
tory~ it was introduced by Cauchy in 1812 in its 
celebrated memoir  on de terminants  and almost  si- 
multaneously by Binet. (See [Minc78] for detailed 
history.) I t  has impor tan t  applications in statisti-  
cal physics and chemistry and plays a central  role 
in many  enumerat ion and linear algebra problems. 

Despite many  efforts, the fastest  known algori thm 
for the exact computa t ion  of the permanent  re- 
quires O(n2 n) operations.  (It is based on Ryser 's  
formula [Ryser63]. See [NW75] for implementa-  
tion.) Some of the difficulty seems to reside in the 
fact tha t  a l though the permanent  is closely related 
to the determinant ,  it lacks the symmetr ies  of the 
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Permanents and Perfect Matchings

Perm(A) =
∑
σ

n∏
i=1

aiσ(i)

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33



Perm(A) = a11a22a33 + a11a23a32 + a12a21a33

+ a12a23a31 + a13a21a32 + a13a22a31
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Permanents and Perfect Matchings

A =

 0 1 1
1 0 1
1 1 0
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Ati&. It is shown that the permanent function of (0, I)-matrices is a complete problem for the 
class of counting problems associated with nondeterministic polynomial time computations. 
Related counting problems are also considered. The reductions used are characterized by their 
nontrivial use of arithmetic. 

1. Introduction 

Let A be an n x n, matrix. The permanent of A is defined as 

Perm A = C n Ai,- 
0 i=l 

where the summation is over the n! permutations of (1,2, . . . , n). It is the same as 
the determinant except that all the terms have positive sign. Despite this similarity, 
while there are efficient algorithms for computing the determinant all known 
methods for evaluating the permanent take exponential time. This discrepancy is 
annoyingly obvious even for small matrices, and has been noted repeatedly in the 
literature since the last century [IS]. Several attempts have been made to determine 
whether the permanent could be reduced to the determinant via some simple 
matrix transformation. The results have always been negative, except in certain 
special cases [12,X3,16). 

The aim of this paper is to explain the apparent intractability of the permanent by 
showing that it is “complete” as far as counting problems. The results can be 
summarized informally as follows: 

Theorem 1. The complexity of computing the permanent of n x n (0, 1)-matrices is 
NP-hard [3,11] and, in fact, of at least as great difficulty (to within a polynomial 
factor) as that of counting the number of accepting computations of any nondeter- 
ministic polynomial time Turing machine. 
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Counting matchings is hard
(#P-complete)
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