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Abstract

The physics of phase transitions can be modeled by an arrangement of sites in a
d-dimensional lattice known as the Ising model, in which each site is assigned either a
positive or negative spin. In this paper, we will first provide an introduction to the Ising
model. We will define the partition function of an Ising system, and present the problem
of its computation.

In 1993, Jerrum and Sinclair developed a revolutionary new approximation algorithm
for the partition function of an arbitrary ferromagnetic Ising system. The key innovation
Jerrum and Sinclair presented is a new Markov chain known as the Subgraphs-world
model from which we can sample random states of the Ising system. The Subgraphs-
world chain proves to be rapidly mixing, which allows us to efficiently approximate the
partition function through sampling. We will introduce the chain, and show that it is
rapidly mixing.

1 Introduction

The Ising model consists of a collection of sites [n] = {0, 1, . . . , n − 1}. Each pair of sites i, j

has an associated interaction energy Vij. We call the set of pairs with nonzero interaction

energies E, and this set forms a regular lattice graph ([n], E). We define a configuration to be

an assignment of positive (σi = +1) and negative (σi = -1) spins to each site i ∈ [n]. A given

configuration has energy given by the Hamiltonian

H(σ) = −
∑
{i,j}∈E

Vijσiσj −B
∑
k∈[n]

σk,

where B is a number that reflects the size of the external field.

A special case of the Ising model occurs when all interaction energies are nonnegative. The

system then models the behavior of a ferromagnet, further detailed in Cipra’s paper [1].
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In a more general system, our chief goal in working with the Ising model is to compute the

partition function, given by

Z = Z(Vij, B, β) =
∑
σ

exp (−βH(σ)),

where β is related to temperature and the sum runs over all possible configurations σ. Knowl-

edge of Z allows us to compute most of the relevant physical properties of the system. Most

importantly, the probability that the system in equilibrium is found in configuration σ is given

by exp (−βH(σ)). Other quantities such as the mean energy and the mean magnetic mo-

ment correspond to certain logarithmic derivatives of Z. Additionally, phase transitions in the

system generally correspond to singularities in these derivatives.

2 Markov Chains and the Ising Model

The logic behind using Markov chains in computing the partition function is that in order to

compute weighted combinatorial sums, it often suffices to be able to sample configurations at

random with probabilities proportional to their weights. In the case of the Ising model, we

sample over all configurations σ with weights exp (−βH(σ)). The goal is to set up an ergodic

Markov chain with configurations as its states and with transitions that correspond to small

local perturbations in the system. If we can then design the chain so that its equilibrium dis-

tribution is the appropriate weighted distribution over all configurations, then we can perform

a random sampling by running the chain for a certain number of steps and taking whatever

state it ends up in. The catch, however, is that unless the chain used is rapidly mixing, this

procedure might be highly inefficient. The first attempts made by physicists to apply this

procedure utilized Markov chains on the Ising spin configurations σ. Unfortunately, no such

chains were found to be rapidly mixing for all possible parameter values.

3 Subgraphs-world Process

Along come Jerrum and Sinclair, whose Markov chain makes use of an entirely new domain

where the configurations are spanning subgraphs of the interaction graph ([n], E). We deter-

mine an energy for each subgraph using weights attached to its edges and vertices. Though the

physical significance of these subgraph configurations is not clear, the partition function of this
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chain is very closely related to that of the chains on spin configurations σ. Most importantly,

we are able to define a natural chain on these subgraphs with the desired equilibrium distri-

bution which is rapidly mixing. The Markov chain, MCIsing of the subgraphs-world process

is defined as follows. The state space Ω is the set of all spanning subgraphs X ⊆ E. We note

that |Ω| = 2m, where m = |E| is the number of unordered pairs {i, j} with nonzero interaction

energy.

For X, X
′ ∈ Ω with X 6= X

′
, the transition probability from X to X

′
is given by

p(X,X
′
) =


1/2m if |X ⊕X ′ | = 1 and w(X

′
) ≥ w(x)

w(X
′
)/2mw(X) if |X ⊕X ′ | = 1 and w(X

′
) < w(x)

0 otherwise,

where X ⊕ X ′
denotes the symmetric difference of X and X

′
. Here, w(X) is the weight

assigned to a given configuration X ⊆ E.

4 Rapid Mixing

To show that their chain is rapidly mixing, Jerrum and Sinclair make use of two theorems. To

understand the first theorem, we need to define a measure known as conductance.

For an ergodic reversible Markov chain, the conductance is defined by

Φ = min


∑
X∈S
X

′
/∈S

q(X,X
′
)/

∑
X∈S

π(X)


where the minimization is over all subsets S of states with 0 <

∑
X∈S π(X) ≤ 1/2. Con-

ductance serves to measure the rate at which the Markov chain moves around the state space.

Given that the chain starts in some state in some small subset S of the state space, the con-

ductance provides a lower bound on the conditional probability that the stationary process

gets out of S in a single step. Thus, we might expect a chain with a large conductance to

converge fast.

Theorem 1. Let Φ be the conductance of an ergodic, reversible Markov chain with station-

ary distribution π and minX p(X,X) ≤ 1/2. Let p(t) denote the distribution of the state at

time t given that the initial state is X0. Then the variation distance ||p(t) − π|| satisfies

||p(t) − π|| ≤ (1− Φ2)

π(X0)
.
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The full proof of Theorem 1 can be read in Jerrum and Sinclair’s paper [2], but we will

outline some key points here. Jerrum and Sinclair showed that the variation distance at time

t is related to the second eigenvalue λ1 of the Markov chain by the inequality

||p(t) − π|| ≤ λt1
π(X0)

.

Additionally, Jerrum and Sinclair show that the bound

λ1 ≤ 1− Φ2

holds for chains in which all self-loop probabilities are at least 1/2. Theorem 1 results from

these two inequalities. The converse of Theorem 1 states that the conductance of a rapidly

mixing Markov chain cannot be too small. In order to ensure a variation distance of at most

δ, it is sufficient to run the chain for Φ2(ln δ−1 + ln π(X0)−1) steps. So if the conductance has

an inverse polynomial lower bound, then rapid mixing will generally follow. We provide such

a bound for the MCIsing chain with the following theorem.

Theorem 2. The conductance of the Markov chain MCIsing is bounded below by µ4/4m.

A full proof of Theorem 2 can be read in Jerrum and Sinclair’s paper [2], but we will

outline their method here. They develop a general path counting argument, which can then

be applied to the MCIsing chain.

For each pair of states I, F ∈ Ω, we specify a canonical path from I to F , i.e. from the

initial state to the final state. Each step along the canonical path is performed using a valid

transition of the Markov chain. We assign a weight to each canonical path, determined by

the product of the stationary probabilities at the initial and final states. So the weight of

the path from I to F is given by π(I)π(F ), and is independent of the intermediate states

along the path. The logic is that if we choose these canonical paths well, we will be able

to produce a good bound on conductance. We suppose that we can show that for each

transition T → T
′
, the aggregated weight of all canonical paths of which the transition T → T

′

occurs is bounded above by bq(T, T
′
), where q(X,X

′
) = π(X)p(X,X

′
). We will consider

any partition of the state space into two sets S and S̄ such that
∑

X∈S π(X) ≤ 1/2. Thus

the total weight of all canonical paths which cross the cut defined by S and S̄ is at least
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∑
I∈S

∑
F∈S̄ π(I)π(F ) = π(S)π(S̄) ≥ π(S)/2. Additionally, when we sum over all transitions

T → T
′

with T ∈ S and T
′ ∈ (S̄), we get that the total weight of all canonical paths which

cross the cut is bounded above by b
∑

T∈S
∑

T ′∈(S̄) q(T, T
′
). And since S and (S̄) represent a

general partition of the state space, we may conclude that the Markov chain’s conductance is

bounded below by 1/2b. The bulk of the proof involves estimating b, which is then used to

obtain a bound on conductance, and hence the rate of convergence of the chain MCIsing.

5 Conclusion

With the innovation of the rapidly mixing Markov chain of the Subgraphs-world model, Jerrum

and Sinclair developed the first provably efficient approximation algorithm for the partition

function of an arbitrary Ising system. Their algorithm runs in time polynomial in the number

of sites n. Jerrum and Sinclair also show in their paper that their algorithm is essentially

the best one can hope for [2]. The problem of computing the partition function for the Ising

model, when viewed as a combinatorial enumeration problem, turns out to be #P-complete,

which is also further detailed on in the Jerrum and Sinclair paper [2].
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