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1 Introduction

The theory of Markov chains of the discrete form X1, X2, . . . can be adapted to a continuous
form Xt, t ∈ [0,∞). This requires use of a q-matrix of transition probabilities, which is also
known as an infinitesimal generator for the Markov chain Xt. The q-matrix can be used to
derive a related jump matrix which gives a discrete Markov chain called the jump chain Jn.
The Markov chain chain Xt is given by running the chain Jn and then holding at each state
for an amount of time given by independent Markov chains representing the hold times.

There is also a more abstract analytic approach following [And] some aspects of which
we present here.

2 Definitions

A Markov chain Xt is a stochastic process with domain [0,∞ ⊂ ℝ and countable state space
E which satisfies the following Markov property: given a set of states {i1, . . . , ik} ⊂ E and
a collection of times {t1, . . . , tk} ⊂ [0,∞), we have

ℙ(Xtk = ik∣Xtk−1
= ik−1, . . . , Xt1 = i1) = ℙ(Xtk = ik∣Xtk−1

= ik−1).

In other words, the dependence of the current state on any set of previous states is only
sensitive to the most recent of these prior states. Note that by evaluating X(1), X(2), . . . we
obtain an ordinary discrete Markov chain (nothing special about the countable set {1, 2, . . .}
here–we can generate a discrete Markov chain evaluating �ℕ for any � > 0). Given states
i, j ∈ Y we define

Pij(t, s) = ℙ(Xs = j∣Xt = i).

The chain Xt is said to be homogeneous if for all states i, j ∈ E and all � > 0 we have

Pij(t+ �, s+ �) = Pij(t, s).

In this case the Pij(t, s) depends only on the difference t− s, and we write

Pij(t) = ℙ(Xt = j∣X0 = i).

All Markov chains in this paper are assumed to be homogeneous. The matrix valued function
Pij(t) is called the transition function of the Markov chain X.
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3 Properties of the Transition Function

There are a few properties transition function Pij(t) which are in some sense essential; that
is, given a matrix valued function Qij(t) with these properties, it is possible to create a
Markov chain Z with Qij(t) as its transition function. These are as follows:

1) Pij(t) ≥ 0 for all states i, j and ∑
j∈E

Pij(t) = 1.

This rule states that after t time, the Markov chain is in some state of the state space E.
2) Pij(0) = �ij. Here the � represents the Kronecker delta which is 1 when i = j and

0 elsewhere. This says that if you start at state i, you cannot start also at some state j
distinct from i.

3) The Chapman-Kolmogorov or semigroup property states that:

Pij(s+ t) =
∑
k∈E

Pik(s)Pkj(t).

The interpretation here is that to pass from state i to state j in s + t time, you must first
pass from state i to another state k in s time, and then pass from that state k to state j
in k time. The algebraic term semigroup indicates that we can regard the pairs (i, j), (i, k),
and (k, j) as differences in some semigroup and then we see some cancellation

i− j = (i− k) + (k − j).

Now we sketch the proof that any function Pij which satisfies the three rules (1) - (3)
must be a transition function. Note that as the function encodes first order or ”rate”-type
information, we’ll need some initial condition. In this case, the initial condition is a vector
(pi)i∈E which describes the initial distribution of the states. Thus we have pi ≥ 0 and∑
pi = 1.
Let Ω denote the set of all functions from [0,∞) to E, the state space. We have for every

t ∈ [0,∞) the evaluation function which carries ! ∈ Ω to !(t) ∈ E. If A ⊂ Ω is of the form

A = {! ∈ Ω∣!(t1) ∈ E1, . . . , !(tn) ∈ En}

where 0 ≤ t1 < t2 < . . . < tn, and E1, . . . En ⊂ E, then we call A a finite dimensional
rectangle with respect to the times {ti} and the sets {Ei}. If A is a finite dimensional
rectangle with respect to a family of singletons, i.e. Ek = {ik}, then we say that A is
narrow, and define

Pi(A) =
n∏

m=1

Pim−1,im(tm − tm−1),

where t0 = 0 and i0 = i. Basically Pi(A) determines the probability that the chain starts
at the state i and then follows through the path dictated by the finite rectangle A. Note
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that if A is any finite dimensional rectangle, then it can be decomposed as the union of a
countable set of narrow finite dimensional rectangles, because a finite product of countable
sets is countable.

Thus if A is decomposed into narrow rectangles A1, . . ., we can define

Pi(A) =
∞∑
k=1

Pi(Ak).

Let ℱ0 denote the class of all finite unions of disjoint finite rectangles. Then ℱ0 is an
algebra of subsets, because taking a union of disjoint finite rectangles yields another union
of disjoint finite rectangles. The closure under complementation is slightly trickier–basically
to guarantee that you are not within the narrow rectangle {(tk, ik)∣k = 1, . . . , n}, you have
to have one j ∈ [n] such that X(tj) ∕= ij, and this set can be decomposed via the inclusion
exclusion principle into a finite union of disjoint sets.

Now we note that we have all the ingredients needed to construct a measure via Caratheodory’s
theorem (see Folland for details). Caratheodory’s theorem gives us a �-algebra ℱ which
contains ℱ0. As specified in the construction, we see that for the 1-dimensional rectangle
{(0, i), (t, j)} we have probability Pij(t). Now given an arbitrary element F of ℱ , we set

ℙ(F )
∑
i∈E

piPi(F )

where the numbers pi are the initial probability distribution. Note that intuitively this says
that the likelihood that F ”happens” is the sum of the likelihoods that the chain starts in
some state i and manages to run through F , as i ranges over E. This gives us a probability
space. The Markov chain is then the family of evaluation functions X(t) which take a
function ! ∈ Ω and return !(t).

Note that the Markov chain property is satisfied, because the probability that X(t) is i is
simply the measure of some finite rectangles. These conditional probability ℙ(X(tk) =
ik∣X(tk−1) = ik−1, . . . , X(t1) = i1) can be directly computed and the terms involving
tk−2, . . . , t1 all vanish on division.

This completes the connection between transition functions and continuous time Markov
chains. Thus we will sometimes switch between the two terms.

4 The q-matrix

The definition above is very abstract and non-computational, not unlike the definition of
a topological manifold. However, just as in topology we can specify a manifold more con-
cretely by giving the transition functions, we can specify a continuous time Markov chain by
determining certain infinitesimal data.

We say that a transition function Pij(t) is standard if limt→0 Pii(t) = 1. This seems fairly
mild in practice–it indicates only that we can guarantee with arbitrary probability that the
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chain will stay put if we use a small enough time window. For our purposes that matrices
Pij(t) will all be stochastic, which is to say that their row sums will all equal 1.

Then we have a proposition (Proposition 2.2 in Anderson p.9) which states that the
functions Pii(t) are differentiable at 0 (although possibly with infinite derivative). We say
that Pii(t) := −qi. Then the state i is stable is qi < +∞ and instantaneous elsewise. The
number qi represents the speed with which the chain to move away from state i, given that
it started there. Thus, an instantaneous state is one from which the chain desires to move
immediately. An absorbing state is a state i such that qi = 0, i.e. one in which the chain
displays no desire to move away from the state i.

Another theorem of Anderson (Prop 2.4) states that if i is a stable state then P ′ij(t) exists
and is continuous on [0,∞). The matrix Q = [qij] = [P ′ij(0)] is called the q-matrix or the
infinitesimal generator of the Markov chain.

Now as before we describe how to take a potential q-matrix and construct a Markov chain
out of it.

A q-matrix Q = [qij] is a real matrix (possibly countable dimensional) which satisfies

qii ≤ 0

qij ≥ 0, j ∕= i∑
j

qij = 0.

Let qi =
∑

j ∕=i qij. As before we want this to represent the total tendency of the chain to
leap out of the state i.

Now we define a ”jump matrix” which will allow us to discretize the problem. If qi = 0,
then let Jij = �ij. If qi ∕= 0, then let Jij = qij/qi. Now we can describe a Markov process
as follows: take the jump matrix J and use it run a discrete -time Markov chain XJ . This
gives us a sequence i0, i1, . . . of states visited by XJ . Between jumps, say at state ik, we
insert a holding-time given by an exponential distribution of parameter qik . The memoryless
property of the exponential insures that this is in fact a Markov process.

5 Kolmogorov Backward and Forward Equations

This section presents more analysis of the transition function via the q-matrix. The Kol-
mogorov backward equation takes the form

Pij(t) = �ije
−qit +

∫ t

0

e−qis
∑
k ∕=i

qikPkj(t− s)ds

where t ≥ 0 and i, j are simply states of the Markov chain. A proposition in Anderson
states that if P is the transition matrix of a continuous time Markov chain, with affiliated
q-matrix Q = [qij], then P satisfies the Kolmogorov equation. Initially he proves this with
analysis, but there is an appealing ”literal” interpretation.
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We are trying to measure the likelihood that the chain starts in i and ends in state j at
time t. The question is boring when qi = 0, for if j ∕= i then both sides of the equation are
equal to 0, and if j = i then both sides of the equation are equal to 1. Therefore assume
that qi > 0. If i ∕= j then at some point s < t we must have the chain leaving, after living in
state i with parameter qi. This accounts for the density term qie

−qis. After leaving the state
i there is an immediate transition (via the jump matrix qik/qi)) to a new state k ∕= i. After
the chain hits state k at time s, there is t− s time remaining for the chain to get back, and
the likelihood of this occurring is Pkj(t − s). In the case where i = j, we can either pursue
this jaunt through the states, or possibly stay in the state i for the entire interval [0, t] with
probability given by the holding time e−qit.

There are an analogous set of equations known as the Kolmogorov forward equations
which describe the evolution of ”nice” Markov chains in which there are only finitely many
jumps over a finite time interval. These take the form:

Pij(t) = �ije
−qit +

∫ t

0

e−qis
∑
k ∕=j

Pik(t− s)qkjds.

These also have a nice literal interpretation. In order for the chain to land at j, it must
reach some penultimate state other than j, say k. The qkjds represents the likelihood of
jumping from state k to state j duing a tiny window at time t− s. The quantity Pik(t− s)
represents the likelihood of landing in the eligible state k ∕= j after time t − s has elapsed.
The quantity e−qjs represents the likelihood that after the chain makes the jump from k to
j, with s time left to spare, that it stays put and doesn’t leave state j. The �ije

−qit term, as
before, represents the probability that the chain never moves.
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