Continuous Time Markov Chains

Dan Crytser

March 11, 2011

1 Introduction

The theory of Markov chains of the discrete form X_1, X_2, \ldots can be adapted to a continuous form $X_t, t \in [0, \infty)$. This requires use of a *q*-matrix of *transition probabilities*, which is also known as an infinitesimal generator for the Markov chain X_t . The *q*-matrix can be used to derive a related *jump matrix* which gives a discrete Markov chain called the jump chain J_n . The Markov chain chain X_t is given by running the chain J_n and then holding at each state for an amount of time given by independent Markov chains representing the hold times.

There is also a more abstract analytic approach following [And] some aspects of which we present here.

2 Definitions

A Markov chain X_t is a stochastic process with domain $[0, \infty \subset \mathbb{R}$ and countable state space E which satisfies the following Markov property: given a set of states $\{i_1, \ldots, i_k\} \subset E$ and a collection of times $\{t_1, \ldots, t_k\} \subset [0, \infty)$, we have

$$\mathbb{P}(X_{t_k} = i_k | X_{t_{k-1}} = i_{k-1}, \dots, X_{t_1} = i_1) = \mathbb{P}(X_{t_k} = i_k | X_{t_{k-1}} = i_{k-1}).$$

In other words, the dependence of the current state on any set of previous states is only sensitive to the most recent of these prior states. Note that by evaluating $X(1), X(2), \ldots$ we obtain an ordinary discrete Markov chain (nothing special about the countable set $\{1, 2, \ldots\}$ here-we can generate a discrete Markov chain evaluating $\epsilon \mathbb{N}$ for any $\epsilon > 0$). Given states $i, j \in Y$ we define

$$P_{ij}(t,s) = \mathbb{P}(X_s = j | X_t = i).$$

The chain X_t is said to be *homogeneous* if for all states $i, j \in E$ and all $\epsilon > 0$ we have

$$P_{ij}(t+\epsilon, s+\epsilon) = P_{ij}(t,s).$$

In this case the $P_{ij}(t,s)$ depends only on the difference t-s, and we write

$$P_{ij}(t) = \mathbb{P}(X_t = j | X_0 = i).$$

All Markov chains in this paper are assumed to be homogeneous. The matrix valued function $P_{ij}(t)$ is called the *transition function* of the Markov chain X.

3 Properties of the Transition Function

There are a few properties transition function $P_{ij}(t)$ which are in some sense essential; that is, given a matrix valued function $Q_{ij}(t)$ with these properties, it is possible to create a Markov chain Z with $Q_{ij}(t)$ as its transition function. These are as follows:

1) $P_{ij}(t) \ge 0$ for all states i, j and

$$\sum_{j \in E} P_{ij}(t) = 1$$

This rule states that after t time, the Markov chain is in some state of the state space E.

2) $P_{ij}(0) = \delta_{ij}$. Here the δ represents the Kronecker delta which is 1 when i = j and 0 elsewhere. This says that if you start at state i, you cannot start also at some state j distinct from i.

3) The Chapman-Kolmogorov or semigroup property states that:

$$P_{ij}(s+t) = \sum_{k \in E} P_{ik}(s) P_{kj}(t).$$

The interpretation here is that to pass from state i to state j in s + t time, you must first pass from state i to another state k in s time, and then pass from that state k to state jin k time. The algebraic term semigroup indicates that we can regard the pairs (i, j), (i, k), and (k, j) as differences in some semigroup and then we see some cancellation

$$i - j = (i - k) + (k - j).$$

Now we sketch the proof that any function P_{ij} which satisfies the three rules (1) - (3) must be a transition function. Note that as the function encodes first order or "rate"-type information, we'll need some initial condition. In this case, the initial condition is a vector $(p_i)_{i \in E}$ which describes the initial distribution of the states. Thus we have $p_i \geq 0$ and $\sum p_i = 1$.

Let Ω denote the set of all functions from $[0, \infty)$ to E, the state space. We have for every $t \in [0, \infty)$ the evaluation function which carries $\omega \in \Omega$ to $\omega(t) \in E$. If $A \subset \Omega$ is of the form

$$A = \{\omega \in \Omega | \omega(t_1) \in E_1, \dots, \omega(t_n) \in E_n\}$$

where $0 \leq t_1 < t_2 < \ldots < t_n$, and $E_1, \ldots E_n \subset E$, then we call A a finite dimensional rectangle with respect to the times $\{t_i\}$ and the sets $\{E_i\}$. If A is a finite dimensional rectangle with respect to a family of singletons, i.e. $E_k = \{i_k\}$, then we say that A is narrow, and define

$$P_i(A) = \prod_{m=1}^{n} P_{i_{m-1}, i_m}(t_m - t_{m-1}),$$

where $t_0 = 0$ and $i_0 = i$. Basically $P_i(A)$ determines the probability that the chain starts at the state *i* and then follows through the path dictated by the finite rectangle *A*. Note

that if A is any finite dimensional rectangle, then it can be decomposed as the union of a countable set of narrow finite dimensional rectangles, because a finite product of countable sets is countable.

Thus if A is decomposed into narrow rectangles A_1, \ldots , we can define

$$P_i(A) = \sum_{k=1}^{\infty} P_i(A_k).$$

Let \mathcal{F}_0 denote the class of all finite unions of disjoint finite rectangles. Then \mathcal{F}_0 is an algebra of subsets, because taking a union of disjoint finite rectangles yields another union of disjoint finite rectangles. The closure under complementation is slightly trickier-basically to guarantee that you are not within the narrow rectangle $\{(t_k, i_k) | k = 1, \ldots, n\}$, you have to have one $j \in [n]$ such that $X(t_j) \neq i_j$, and this set can be decomposed via the inclusion exclusion principle into a finite union of disjoint sets.

Now we note that we have all the ingredients needed to construct a measure via Caratheodory's theorem (see Folland for details). Caratheodory's theorem gives us a σ -algebra \mathcal{F} which contains \mathcal{F}_0 . As specified in the construction, we see that for the 1-dimensional rectangle $\{(0,i), (t,j)\}$ we have probability $P_{ij}(t)$. Now given an arbitrary element F of \mathcal{F} , we set

$$\mathbb{P}(F)\sum_{i\in E}p_iP_i(F)$$

where the numbers p_i are the initial probability distribution. Note that intuitively this says that the likelihood that F "happens" is the sum of the likelihoods that the chain starts in some state i and manages to run through F, as i ranges over E. This gives us a probability space. The Markov chain is then the family of evaluation functions X(t) which take a function $\omega \in \Omega$ and return $\omega(t)$.

Note that the Markov chain property is satisfied, because the probability that X(t) is *i* is simply the measure of some finite rectangles. These conditional probability $\mathbb{P}(X(t_k) = i_k | X(t_{k-1}) = i_{k-1}, \ldots, X(t_1) = i_1)$ can be directly computed and the terms involving t_{k-2}, \ldots, t_1 all vanish on division.

This completes the connection between transition functions and continuous time Markov chains. Thus we will sometimes switch between the two terms.

4 The *q*-matrix

The definition above is very abstract and non-computational, not unlike the definition of a topological manifold. However, just as in topology we can specify a manifold more concretely by giving the transition functions, we can specify a continuous time Markov chain by determining certain infinitesimal data.

We say that a transition function $P_{ij}(t)$ is standard if $\lim_{t\to 0} P_{ii}(t) = 1$. This seems fairly mild in practice–it indicates only that we can guarantee with arbitrary probability that the

chain will stay put if we use a small enough time window. For our purposes that matrices $P_{ij}(t)$ will all be stochastic, which is to say that their row sums will all equal 1.

Then we have a proposition (Proposition 2.2 in Anderson p.9) which states that the functions $P_{ii}(t)$ are differentiable at 0 (although possibly with infinite derivative). We say that $P_{ii}(t) := -q_i$. Then the state *i* is stable is $q_i < +\infty$ and instantaneous elsewise. The number q_i represents the speed with which the chain to move away from state *i*, given that it started there. Thus, an instantaneous state is one from which the chain desires to move immediately. An absorbing state is a state *i* such that $q_i = 0$, i.e. one in which the chain displays no desire to move away from the state *i*.

Another theorem of Anderson (Prop 2.4) states that if i is a stable state then $P'_{ij}(t)$ exists and is continuous on $[0, \infty)$. The matrix $Q = [q_{ij}] = [P'_{ij}(0)]$ is called the *q*-matrix or the infinitesimal generator of the Markov chain.

Now as before we describe how to take a potential q-matrix and construct a Markov chain out of it.

A q-matrix $Q = [q_{ij}]$ is a real matrix (possibly countable dimensional) which satisfies

$$q_{ii} \le 0$$
$$q_{ij} \ge 0, j \ne i$$
$$\sum_{j} q_{ij} = 0.$$

Let $q_i = \sum_{j \neq i} q_{ij}$. As before we want this to represent the total tendency of the chain to leap out of the state *i*.

Now we define a "jump matrix" which will allow us to discretize the problem. If $q_i = 0$, then let $J_{ij} = \delta_{ij}$. If $q_i \neq 0$, then let $J_{ij} = q_{ij}/q_i$. Now we can describe a Markov process as follows: take the jump matrix J and use it run a discrete -time Markov chain X^J . This gives us a sequence i_0, i_1, \ldots of states visited by X^J . Between jumps, say at state i_k , we insert a holding-time given by an exponential distribution of parameter q_{i_k} . The memoryless property of the exponential insures that this is in fact a Markov process.

5 Kolmogorov Backward and Forward Equations

This section presents more analysis of the transition function via the q-matrix. The Kolmogorov backward equation takes the form

$$P_{ij}(t) = \delta_{ij} e^{-q_i t} + \int_0^t e^{-q_i s} \sum_{k \neq i} q_{ik} P_{kj}(t-s) ds$$

where $t \ge 0$ and i, j are simply states of the Markov chain. A proposition in Anderson states that if P is the transition matrix of a continuous time Markov chain, with affiliated q-matrix $Q = [q_{ij}]$, then P satisfies the Kolmogorov equation. Initially he proves this with analysis, but there is an appealing "literal" interpretation.

We are trying to measure the likelihood that the chain starts in i and ends in state j at time t. The question is boring when $q_i = 0$, for if $j \neq i$ then both sides of the equation are equal to 0, and if j = i then both sides of the equation are equal to 1. Therefore assume that $q_i > 0$. If $i \neq j$ then at some point s < t we must have the chain leaving, after living in state i with parameter q_i . This accounts for the density term $q_i e^{-q_i s}$. After leaving the state i there is an immediate transition (via the jump matrix q_{ik}/q_i)) to a new state $k \neq i$. After the chain hits state k at time s, there is t - s time remaining for the chain to get back, and the likelihood of this occurring is $P_{kj}(t - s)$. In the case where i = j, we can either pursue this jaunt through the states, or possibly stay in the state i for the entire interval [0, t] with probability given by the holding time $e^{-q_i t}$.

There are an analogous set of equations known as the Kolmogorov forward equations which describe the evolution of "nice" Markov chains in which there are only finitely many jumps over a finite time interval. These take the form:

$$P_{ij}(t) = \delta_{ij} e^{-q_i t} + \int_0^t e^{-q_i s} \sum_{k \neq j} P_{ik}(t-s) q_{kj} ds.$$

These also have a nice literal interpretation. In order for the chain to land at j, it must reach some penultimate state other than j, say k. The $q_{kj}ds$ represents the likelihood of jumping from state k to state j duing a tiny window at time t - s. The quantity $P_{ik}(t - s)$ represents the likelihood of landing in the eligible state $k \neq j$ after time t - s has elapsed. The quantity e^{-q_js} represents the likelihood that after the chain makes the jump from k to j, with s time left to spare, that it stays put and doesn't leave state j. The $\delta_{ij}e^{-q_it}$ term, as before, represents the probability that the chain never moves.

6 Bibliography

Aldous, David. Reversible Markov Chains and Random Walks on Graphs. 1999. http://www.stat.berke.dous/RWG/book.html

Anderson, William J. Continuous Time Markov Chains. 1991. Springer Verlag. New York.

Feres, Renato. Notes for Math 450: Continuous Time Markov Chain and Stochastic Simulation. 2007. http://www.math.wustl.edu/ feres/Math450syll.html

Folland, Gerald. Real Analysis: Modern Techniques and Their Applications. 1999. Wiley. New York.