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1 Introduction

The theory of Markov chains of the discrete form X7, Xy, ... can be adapted to a continuous
form X, ¢ € [0,00). This requires use of a g-matrix of transition probabilities, which is also
known as an infinitesimal generator for the Markov chain X;. The g-matrix can be used to
derive a related jump matriz which gives a discrete Markov chain called the jump chain .J,,.
The Markov chain chain X} is given by running the chain J,, and then holding at each state
for an amount of time given by independent Markov chains representing the hold times.

There is also a more abstract analytic approach following [And] some aspects of which
we present here.

2 Definitions

A Markov chain X; is a stochastic process with domain [0,00 C R and countable state space
E which satisfies the following Markov property: given a set of states {i,...,ix} C E and
a collection of times {t1,...,t} C [0,00), we have

P(th — ik‘th71 — 7;]{7_1, e ,th — ’Ll) — P(th — Z'k|th71 — ik—l)-
In other words, the dependence of the current state on any set of previous states is only
sensitive to the most recent of these prior states. Note that by evaluating X (1), X(2),... we
obtain an ordinary discrete Markov chain (nothing special about the countable set {1,2,...}
here-we can generate a discrete Markov chain evaluating eN for any € > 0). Given states
1,7 € Y we define
Pj(t,s) =P(X, = j|X; =1).

The chain X; is said to be homogeneous if for all states 7,7 € E and all € > 0 we have

PZ]<t + €, S + 6) = Pij(t, S).
In this case the P;(¢, s) depends only on the difference ¢ — s, and we write

P;(t) = P(Xy = j|Xo =1).

All Markov chains in this paper are assumed to be homogeneous. The matrix valued function
P;;(t) is called the transition function of the Markov chain X.
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3 Properties of the Transition Function

There are a few properties transition function P;;(¢) which are in some sense essential; that
is, given a matrix valued function @);;(¢) with these properties, it is possible to create a
Markov chain Z with @Q;;(t) as its transition function. These are as follows:

1) P,;(t) > 0 for all states ¢, j and

> Py(t) =

JEE

This rule states that after ¢ time, the Markov chain is in some state of the state space E.
2) P;;(0) = ¢6;;. Here the 0 represents the Kronecker delta which is 1 when ¢ = j and
0 elsewhere. This says that if you start at state ¢, you cannot start also at some state j
distinct from .
3) The Chapman-Kolmogorov or semigroup property states that:

z] S+t szk Pk]

keE

The interpretation here is that to pass from state ¢ to state j in s + ¢ time, you must first
pass from state ¢ to another state k£ in s time, and then pass from that state k£ to state j
in k£ time. The algebraic term semigroup indicates that we can regard the pairs (i, j), (i, k),
and (k, j) as differences in some semigroup and then we see some cancellation

i—j ==k +k=J)

Now we sketch the proof that any function P;; which satisfies the three rules (1) - (3)
must be a transition function. Note that as the function encodes first order or "rate”’-type
information, we’ll need some initial condition. In this case, the initial condition is a vector
(pi)ice which describes the initial distribution of the states. Thus we have p; > 0 and
>.pi=1

Let € denote the set of all functions from [0, 00) to E, the state space. We have for every
t € [0, 00) the evaluation function which carries w € 2 to w(t) € E. If A C Q is of the form

A={weQuw(ty) € En,...,w(t,) € E,}

where 0 < t; < ty < ... < t,, and Ey,...E, C E, then we call A a finite dimensional
rectangle with respect to the times {¢;} and the sets {E;}. If A is a finite dimensional
rectangle with respect to a family of singletons, i.e. FEjy = {ix}, then we say that A is

narrow, and define
n
szm 1zm _tm—1>7
=1

where ty = 0 and iy = i. Basically P;(A) determines the probability that the chain starts
at the state ¢ and then follows through the path dictated by the finite rectangle A. Note



that if A is any finite dimensional rectangle, then it can be decomposed as the union of a
countable set of narrow finite dimensional rectangles, because a finite product of countable
sets is countable.

Thus if A is decomposed into narrow rectangles Ay, ..., we can define

P1<A) - ZB(AQ‘

k=1

Let Fy denote the class of all finite unions of disjoint finite rectangles. Then Fy is an
algebra of subsets, because taking a union of disjoint finite rectangles yields another union
of disjoint finite rectangles. The closure under complementation is slightly trickier—basically
to guarantee that you are not within the narrow rectangle {(x,ix)|k = 1,...,n}, you have
to have one j € [n] such that X (¢;) # ¢;, and this set can be decomposed via the inclusion
exclusion principle into a finite union of disjoint sets.

Now we note that we have all the ingredients needed to construct a measure via Caratheodory’s
theorem (see Folland for details). Caratheodory’s theorem gives us a o-algebra F which
contains Fy. As specified in the construction, we see that for the 1-dimensional rectangle
{(0,4), (t,j)} we have probability P;;(t). Now given an arbitrary element F' of F, we set

P(F) Y piPi(F)

1€l

where the numbers p; are the initial probability distribution. Note that intuitively this says
that the likelihood that ' "happens” is the sum of the likelihoods that the chain starts in
some state ¢ and manages to run through F', as ¢ ranges over F. This gives us a probability
space. The Markov chain is then the family of evaluation functions X (¢) which take a
function w € Q and return w(t).

Note that the Markov chain property is satisfied, because the probability that X (¢) is ¢ is
simply the measure of some finite rectangles. These conditional probability P(X (tz) =
i) X (tk—1) = ix—1,...,X(t1) = 1) can be directly computed and the terms involving
tr_o,...,t; all vanish on division.

This completes the connection between transition functions and continuous time Markov
chains. Thus we will sometimes switch between the two terms.

4 The g-matrix

The definition above is very abstract and non-computational, not unlike the definition of
a topological manifold. However, just as in topology we can specify a manifold more con-
cretely by giving the transition functions, we can specify a continuous time Markov chain by
determining certain infinitesimal data.

We say that a transition function P;;(t) is standard if lim, o P;;(¢) = 1. This seems fairly
mild in practice—it indicates only that we can guarantee with arbitrary probability that the



chain will stay put if we use a small enough time window. For our purposes that matrices
P;;(t) will all be stochastic, which is to say that their row sums will all equal 1.

Then we have a proposition (Proposition 2.2 in Anderson p.9) which states that the
functions Pj;(t) are differentiable at 0 (although possibly with infinite derivative). We say
that Py;(t) := —¢;. Then the state i is stable is ¢; < 400 and instantaneous elsewise. The
number ¢; represents the speed with which the chain to move away from state ¢, given that
it started there. Thus, an instantaneous state is one from which the chain desires to move
immediately. An absorbing state is a state ¢ such that ¢; = 0, i.e. one in which the chain
displays no desire to move away from the state .

Another theorem of Anderson (Prop 2.4) states that if 7 is a stable state then Pj;() exists
and is continuous on [0,00). The matrix @ = [g;;] = [P};(0)] is called the g-matrix or the
infinitesimal generator of the Markov chain.

Now as before we describe how to take a potential g-matrix and construct a Markov chain
out of it.

A g-matrix @) = [¢;;] is a real matrix (possibly countable dimensional) which satisfies

qii <0
qi; > 0,5 #i

ZQij = 0.
J

Let ¢; = > ;i Gij- As before we want this to represent the total tendency of the chain to
leap out of the state i.

Now we define a ”jump matrix” which will allow us to discretize the problem. If ¢; = 0,
then let J;; = 6;;. If ¢; # 0, then let J;; = ¢;;/¢;. Now we can describe a Markov process
as follows: take the jump matrix J and use it run a discrete -time Markov chain X”. This
gives us a sequence iy, i1, ... of states visited by X”/. Between jumps, say at state i, we
insert a holding-time given by an exponential distribution of parameter ¢;,. The memoryless
property of the exponential insures that this is in fact a Markov process.

5 Kolmogorov Backward and Forward Equations

This section presents more analysis of the transition function via the g-matrix. The Kol-
mogorov backward equation takes the form

t
R(t) = (5,’j€_qit + / e 18 Z qikij (t - S)dS

0 ki

where ¢t > 0 and 4, j are simply states of the Markov chain. A proposition in Anderson
states that if P is the transition matrix of a continuous time Markov chain, with affiliated
g-matrix () = [g;;], then P satisfies the Kolmogorov equation. Initially he proves this with
analysis, but there is an appealing "literal” interpretation.
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We are trying to measure the likelihood that the chain starts in ¢ and ends in state 7 at
time t. The question is boring when ¢; = 0, for if j # ¢ then both sides of the equation are
equal to 0, and if 7 = ¢ then both sides of the equation are equal to 1. Therefore assume
that ¢; > 0. If © # j then at some point s < ¢t we must have the chain leaving, after living in
state ¢ with parameter ¢;. This accounts for the density term ¢;e”%°. After leaving the state
i there is an immediate transition (via the jump matrix ¢;z/qi)) to a new state k # 7. After
the chain hits state k at time s, there is ¢ — s time remaining for the chain to get back, and
the likelihood of this occurring is Py;(t — s). In the case where i = j, we can either pursue
this jaunt through the states, or possibly stay in the state i for the entire interval [0, ¢] with
probability given by the holding time e~ %",

There are an analogous set of equations known as the Kolmogorov forward equations
which describe the evolution of "nice” Markov chains in which there are only finitely many
jumps over a finite time interval. These take the form:

Pt =000+ [0S Pule — shasds

k#j

These also have a nice literal interpretation. In order for the chain to land at j, it must
reach some penultimate state other than j, say k. The gx;ds represents the likelihood of
jumping from state k to state j duing a tiny window at time ¢ — s. The quantity Py (t — s)
represents the likelihood of landing in the eligible state k # j after time ¢t — s has elapsed.
The quantity e~%* represents the likelihood that after the chain makes the jump from k to
J, with s time left to spare, that it stays put and doesn’t leave state j. The 0;;¢~%" term, as
before, represents the probability that the chain never moves.
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