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In 1921 George Polya investigated random walks on lattices. If upon reaching any vertex

of the lattice, the probability of choosing any one of the 2d edges leading out of that vertex
is 1/2d, then this walk is called simple random walk in d dimensions. The question that
Polya posed amounts to this: Is the traveling point certain to return to its starting point
during the course of its wanderings? If so, we say that the walk is recurrent. If we denote
the probability that the point never returns to its starting point by pescape, then the chain
is recurrent if and only if pescape = 0. If not, we say that the walk is transient. In other
words there is a positive probability that the point will never return to its starting point.
The chain is transient if and only if pescape > 0.

Polya proved the following theorem:
POLYA’s Theorem. Simple random walk on a d-dimensional lattice is recurrent for

d = 1, 2 and transient for d > 2.
We will try to understand this theorem by exploiting the connections between questions

about a random walk on a graph and questions about electric currents in a corresponding
network of resistors. This approach, by calling on methods that appeal to our physical
intuition, will leave us feeling that we know “why”the theorem is true.

We can determine the type of an infinite lattice from properties of bigger and bigger finite
graphs that sit inside it. The lattice analog of balls (solid spheres) in space is defined as
follows: Let r be an integer, which will be the radius of the ball. Let G(r) be the graph gotten
from Zd by throwing out vertices whose distance from the origin is > r. By ”distance from
the origin” we mean the length of the shortest path along the edges of the lattice between
the two points. We adopt this defination of distance because if an electron wants to travel
from the origin to certain node, the path it makes is not a line segment conneting the origin
and the node, which gives to the usual Euclidean distance. Instead, it consists of several
edges and the distance we defined above is the smallest number of edges which all together
connect the origin and the desired point the electron aims at. Let S(r) be the ”sphere” of
radius r about the origin, i.e. those points that are exactly r units from the origin.

In d = 2, S(r) looks like a rotated square. If we set up a x− y coordinates system in the
plane with (0, 0) point located at the origin (0) and make x and y axises parallel to some
edges, the equation for S(r) is

|x|+ |y| = r (1)

Similarly, in the case of d = 3, S(r) looks like an octahedron and its equation is

|x|+ |y|+ |z| = r (2)

Electrical Formulation of the Type Problem: To determine p
(r)
escape electrically, we

simply ground all the points of S(r), which is the boundary of G(r), maintain 0 at one volt,
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and measure the current i(r) flowing into the circuit.We have, from section 3.4 of referrence
1,

p(r)escape =
i(r)

2d
(3)

Since the voltage being applied is 1, i(r) is just the effective conductance between 0 and S(r),
i.e.,

i(r) =
1

Rr
EFF

(4)

where R
(r)
EFF is the effective resistance from 0 to S(r).

Define REFF , the effective resistance from zero to infinity to be the limit of R
(r)
EFF . Then

pescape =
1

2dREFF

(5)

Thus the walk is recurrent if and only if the resistance to infinity is infinity.
One Dimension is Easy: Since an infinite line of 1-ohm resistors obviously has infinite

resistance, it follows that simple random walk on the 1-dimensional lattice is recurrent, as
stated by Polya’s theorem.

What about Higher Dimensions? The difficulty is that the d-dimensional lattice Zd with
the distance we defined lacks the rotational symmetry. By solving the appropriate discrete
Dirichlet problem, the voltages for a one-volt battery attached between 0 and the points of
S(3) in Z2. The resulting voltages are:

0
0 .091 0

0 .182 .364 .182 0
0 .091 .364 1.00 .364 .091 0

0 .182 .364 .182 0
0 .091 0

0

The voltages at points of S(1) are equal, but the voltages at the points of S(2) are not. This
means that the resistance from 0 to S3 cannot be simply written as the sum of the resistances
from 0 to S(1),S(1) to S(2), and S(2) to S(3).

In order to get around the lack of rotational symmetry of the lattice, we use Rayleigh’s
method which involves modifying the network whose resistance we are interested in so as
to get a simpler network. We consider two kinds of modifications, shorting and cutting.
Cutting involves nothing more than clipping some of the branches of the network, or what
is the same, simply deleting them from the network. Shorting involves connecting a given
set of nodes togher with perfectly conducting wires, so that current can pass freely between
them. In the resulting network, the nodes that were shorted together behave as if they were
a single node.

The usefullness of these two procedures stems from the following observations:
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Shorting Law: Shorting certain sets of nodes together can only decrease the effective
resistance of the network between two given nodes.

Cutting Law: Cutting certain branches can only increase the effective resistance between
tow given nodes.

Rayleigh’s idea was to use the Shorting Law and Cutting Law above to get lower and
upper bounds for the resistance of a network. In the case d = 2, we will modify the 2-
dimensional resistor network by shorting certain sets of nodes together so as to get a new
network whose resistance is readily seen to be infinite. As shorting can only decrease the
effective resistance of the network, the resistance of the original network must also be infinite.
Thus the walk is rcurrent when d = 2.

In the case d = 3, we will modify the 3-dimensional network by cutting cut certain of the
resistors so as to get a new network whose resistance is readily seen to be finite. As cutting
can only increase the resistance of the network, the resistance of the original network must
also be finite. Thus the walk is transient when d = 3.

The Plane is Easy: When d = 2, we short together nodes on squares about the origins,
that is, for any given radius r we connect all the points on max{|x|, |y|} = r and view them
as node r. The network we obtain is equicalent to a network on a line with 8n + 4 edges
between node n and n + 1. Now as n 1-ohm resistors in parallel are equivalent to a single
resistor of resistance 1/n ohms, the resistance of theis network out to infinity is

∞∑
n=0

1

8n + 4
=∞ (6)

As the resistance of the old network can only be bigger, we conclude that it too must be
infinite, so that the walk is recurrent when d = 2. Actually, by the symmetry of the original
network, points on max{|x|, |y|} = r for a given r are at the same potential, so the effective
resistance is not affected by shorting these points together.

When d = 3, we want to searching for a residual network. What we want to do is to
delete certain of the branches of the network so as to leave behind a residual network having
manifestly finite resistance. The problem is to reconcile the ”manifestly” with the ”finite”.
We want to cut out enough edges so that the effective resistance of what is left is easy to
calculate, while leaving behind enough edges so taht the result of the calculation is finite.

Trees are easy to analyze: Trees-that is, graphs without circuits- are the easiest to
work with. A full binary tree is one splits into two edges at the root and nodes of every
generation. By shorting nodes in the same generation together, we can show that full binary
has finite resistance. Unfortunately, we can’t even come close to finding the full binary trees
as a subgraph of the 3-dimensional lattice. For in this tree, the number of nodes in a ”ball”
of radius r, that is, all the nth generations with n ≤ r, grows exponentially with r, whereas
in a d-dimensional lattice, it grows like rd, i.e., much slower. There is simply no room for
the full binary trees in any finite-dimensional lattice.

NT3, a ”Three-Dimensional” tree: A 3-dimensional tree NT3 is one where the number
of nodes within a radius r of the root is on the order of r3. Let’s look at an easier tree first,
NT2, a 2-dimensional tree. The idea behind NT2 is that, since a ball of radius r in the plane,
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ought to contain something like r2 points, a sphere of radius r ought to contain something
like r points, so the number of points in a sphere should roughly double when the radius of
the sphere is doubled. For this reason we make the branches of our tree split in two every
time the distance from the origin is (roughly) doubled. Mathematically, the nodes in the rth

generation split in two when r = 2n − 1 for some positive integer n. Thus r is the radius of
the ball, and S(r), which in this case is the rth generation, contains 2r nodes.

NT3, a ”Three-Dimensional” tree: Similarly, in a 3-dimensional tree, when we double the
radius, the size of a sphere should roughly quadruple. Thus in NT3, we make the branches
of our tree split in four where the branches of NT2 would have split in two. That is, the
nodes in the rth generation split in fout when r = 2n − 1 for some positive integer n. Thus
S(r), the rth generation, contains 4r nodes.

By the same shorting technique used in full binary tree, we get that the resistance of
NT2 is infinite, but the resistance of NT3 is not, as we would hope.

But does NT3 Fit in the Three-Dimensional Lattice? We would like to embed NT3 in
Z3. We start by trying to embed NT2 in Z2. To contruct this picture, we start from the
origin and draw a rays, one going north, one going east. Whenever a ray intersects the line
x + y = 2n − 1 for some n which is S(r) in the plane, it spilts into 2 rays, one going north,
and one going east.

Identifications: This isn’t really an embedding, since certain pairs of points that were
distinct in NT2 get identified, that is, they are made to correspond to a single point in
the picture. In terms of our description, sometimes a ray going north and a ray going ease
pass through each other. However, because the points of each identified pair are at the
same distance from the root of NT2, when we put a battery between the root and the n-
generation, they will be at the same potential. Hence, the current flow is not affected by
these identifications, so the identifications have no effect on REFF . For our purpose, then,
we have done just as well as if we had actually embedded NT2.

Now looking at NT2, it is clear that all node at the same S(r) for a given r are at the same
potential. So by embeding NT2 into Z(2), we choose a substantial amount of nodes with the
same potential on each S(r) and get rid of other nodes which have different potentials on
that sphere.

Not NT3 ?: To construct the analogous picture in three dimensions, we start three
rays off from the origin going north, east, and up. Whenever a ray intersects the plane
x+ y+ z = 2n−1 for some n which is S(r) in the space, it splits into three rays, going north,
east, and up. But the subgraph of the 3-dimensional lattice obtained in this way is not NT3.
Because it splits into three instead of four.

We call this tree NT2.5849... because it is 2.5849...-dimensional in the sense that when you
double the radius of a ball, the number of points on the sphere gets multiplied 3 and

3 = 2log23 = 22.5849...−1 (7)

Again, certain pairs of points of NT2.5849... have been allowed to correspond to the same point
in the lattice, but once again the intersections have no effect on REFF .

NT2.5849...: So we haven’t come up with our embedded NT3 yet. But, the resistance of
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NT2.5849... out to infinity is
∞∑
n=1

2n−1

3n
= 1 (8)

Thus we have found an infinite subgraph of the 3-dimensional lattice having finite resistance
out to infinity, and we are done.
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