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Abstract

The eigenvalue or spectral gap of a Markov chain is the difference between the two
largest eigenvalues of the transition matrix of its underlying (state space) graph. In this
paper we explore the intimate relationship between the spectral gap of a Markov chain
and its mixing time, as well as another closely related structural property of a Markov
chain known as conductance. The relationships among these properties can be used to
put bounds on a chain’s mixing time, and can be used to prove both rapid and slow
mixing.

As the spectral gap and conductance of a Markov chain are often difficult to calculate,
an additional tool, canonical paths, is introduced which can be used to put a lower bound
on the spectral gap. Several theorems relating these properties to mixing time as well as
an example of using these techniques to prove rapid mixing are given.

1 Introduction

Given any Markov chain, we can represent it as a random walk on some weighted directed

graph G. Let P be the transition matrix for the directed graph associated to an ergodic

Markov chain, with entries Pij corresponding to the probability of transitioning from state

i to state j in one iteration of the Markov chain. Let {λi} be the eigenvalues of P , with

|λ1| ≥ |λ2| ≥ · · · |λn|. Since the Markov chain is ergodic, we know that the system has a

stationary distribution π, and thus has an eigenvalue of 1 (corresponding to the eigenvector

π.) By Perron Frobenius theory for nonnegative matrices [5], we can conclude that λ1 = 1,

and that |λi| < 1 for all 2 ≤ i ≤ n. Further, if the Markov chain is reversible then we can

conclude that all of its eigenvalues are real.

A Markov chain is lazy if the probability of staying in any state is at least 1/2. (And any

Markov chain can be made lazy by adding self loops of weight one half to each state). If P is a

reversible, lazy Markov chain, then all of its eigenvalues will be positive. This can be shown by
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writing P = 1
2
(Q + I) for some transition matrix Q. Since Q also describes a valid reversible

Markov chain, its eigenvalues µi = 2λi + 1 must satisfy the Perron Frobenius condition that

µi ≥ −1 and thus each λi ≥ 0. As such, since any Markov chain can be made lazy without

substantially increasing its mixing time, the negative eigenvalues of a Markov chain are never

a significant concern. So we will only consider lazy Markov chains for the remainder of the

paper.

Then, if the Markov chain is lazy, we can define its eigenvalue or spectral gap, the difference

of its two largest eigenvalues, to be λ1 − λ2 = 1 − λ1. (In greater generality, this would be

1 −max{|λ2|, |λn|}.) The eigenvalue gap is useful because it can be used to put a bound on

the mixing time for the Markov chain.

Specifically, let Ω be the state space of the Markov chain. Since the chain is ergodic, we

know that the chain will converge to the stationary distribution π, and thus for every i, j ∈ Ω,

limt→∞(P t)ij = πj. We thus define the variation distance of a state i at time t from the

stationary distribution to be

∆i(t) =
1

2

∑
j∈Ω

(P t)ij

and the mixing time to be

τ(ε) = max
i∈Omega

min{t | (∀t′ > t)∆i(t
′) ≤ ε}

Theorem 1.1. For an ergodic, reversible, Markov chain and ε > 0,

1

2 ln(2ε)

λ2

1− λ2

≤ τ(ε) ≤ 1

1− λ2

ln

(
1

π∗ε

)
Where π∗ = minj∈Ω πj.

Thus, if we can calculate or bound the size of the eigenvalue gap of our Markov chain we

can determine the chains mixing time, and can determine whether our chain exhibits rapid (or

slow) mixing depending on how the eigenvalue gap changes as we scale the size of our state

space. The most commonly used method for bounding the eigenvalue gap of a Markov chain

is via a property of the Markov chain known as conductance.
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2 Conductance

The main idea of conductance is to formalize the idea that chains with fewer “bottlenecks”

will mix faster. If a chain has a significant region in its state space graph that is difficult

to enter or leave, then the Markov chain will necessarily take longer to reach the stationary

distribution. We first define the ergodic flow between two subsets S, T ⊂ Ω to be

Q(S, T ) =
∑

i∈S,j∈T

π(i)Pij

and the quantity

ΦS =
Q(S, Sc)

π(S)

where π(S) =
∑

i∈S πi. The quantity ΦS can be thought of as the conditional probability that

a Markov chain in the stationary distribution crosses the cut from S to Sc in a single iteration,

given that it starts in S. [6] Finally, we can define the conductance (also known as the Cheeger

constant) of the chain:

Φ = min
S⊂Ω

π(S)≤ 1
2

ΦS

We would expect the conductance of a Markov chain, which is effectively a measure of how

well connected the state space graph is, to be directly correlated with the required mixing

time for the chain, and thus to the eigenvalue gap. This relationship is given by an inequality

known as the Cheeger inequality:

Theorem 2.1 (Cheeger Innequality). For a lazy, reversible markov chain, the eigenvalue gap

1− λ2 satisfies:
Φ2

2
≤ 1− λ2 ≤ 2Φ

The Cheeger inequality was originally a result in Riemannian Manifolds [3] which was

modified by Alon [1] and Alon and Milman [2] to a discrete case of the second eigenvalue of the

adjacency matrix for simple unweighted graphs. In this case the analogue of the conductance

was called the magnification of the graph, and was a generalization of the widely studied

concept of expansion for bipartite graphs.

Combining this result with the previous result relating the eigenvalue gap to the mixing

time we can relate the conductance directly to the mixing time as follows: [6]
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1− Φ

2Φ
ln

(
1

ε

)
≤ τ(ε) ≤ 2

Φ2

(
ln

1

π∗
+ ln

1

ε

)
Corollary 2.2. A family of ergodic, reversible Markov chain with state space of size n and

conductance conductance Φn is rapidly mixing if and only if

Φn ≥
1

p(n)

for some polynomial p.

This result is commonly used to show rapid mixing of Markov chains, and almost all proofs

of slow mixing rely on showing that the conductance is exponentially small in the problem

size. Mihail [4] later showed that the upper bound holds even if the chain is non-reversible.

3 Canonical Paths

While the eigenvalue gap and conductance of a Markov chain can provide close bounds on the

mixing time of the chain, these values are often prohibitively difficult to calculate. Since we

are generally interested in proving rapid mixing, we are most interested in calculating a lower

bound on the conductance of our graph. Another method, canonical paths and congestion can

be useful in this regard, as they are much easier to calculate and can be used to bound the

conductance of the graph from below.

For any pair i, j ∈ Ω we can define a canonical path γij = (i = z0, z1 · · · zk = j) running

from from i to j through adjacent states in the state space graph of the Markov chain. Let

Γ = {γij} be the family of canonical paths running between all pairs of states of the system.

The congestion of the Markov chain is then defined to be

ρ = ρ(Γ) = max
(u,v)


1

π(u)Puv

∑
i,j∈Ω

γijuses(u,v)

π(i)π(j)


Where the maximum runs over all edges of the state space graph. The π(u)Puv term in

the definition above can be thought of as being the natural “capacity” of the edge uv, or how

much traffic it would normally experience in the stationary state. The sum above then counts
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the flow or “load” of the edge within this family of canonical paths, and the congestion, ρ is

the maximum load of any edge of the state space graph as a fraction of its capacity.

As one might expect, high congestion in a graph corresponds to a lower conductance, as

demonstrated by the following theorem. [7]

Theorem 3.1. For any reversible Markov chain, and any choice of canonical paths

Φ ≥ 1

2ρ

Proof. Let S ⊂ Ω be the subset with 0 < π(S) < 1
2

which minimizes the quotientQ(S, Sc)/π(S)

and thus defines the conductance of the graph. For any choice of paths, the total flow crossing

the cut from S to Sc is π(S)π(Sc), while the total capacity of the cut edges (x, y), with x ∈ S

and y ∈ Sc, is Q(S, Sc). Hence there must exist a cut edge (u, v), u ∈ S, v ∈ Sc with

1

π(u)Puv

∑
x,y∈Ω

γxyuses(u,v)

π(x)π(y) ≥ π(S)π(Sc)

Q(S, Sc)
≥ π(S)

2Q(S, Sc)
=

1

2Φ

Note that the above result applies to all possible choices of canonical paths, for example,

no requirement was ever made that the shortest path between two states be chosen. In order

to prove rapid mixing by this result, however, we would necessarily need to make a choice of

canonical paths which does not excessively “overload” any edge relative to its capacity.

4 An example

Consider the lazy random walk on an odd cycle of length n. It can easily be seen that this

chain is both ergodic and reversible, with stationary distribution π(i) = 1
n

for every state i. We

make the “natural” choice of canonical paths in this chain, namely the shortest route around

the circle. Both the Markov chain and the choice of canonical paths is completely symmetric,

so we need only count the number of times that each edge is used by one of these canonical

paths.

Note that each edge is used once by a path of length 1, twice by paths of length 2 and so

on, up to paths of length (n-1)/2. so the total number of times each path is used is

(n−1)/2∑
i=1

i =
n−1

2
· n+1

2

2
=

(n+ 1)(n− 1)

8

5



We can then use this to calculate the congestion in the graph:

ρ =
1

π(u)Puv

∑
x,y∈Ω

γxyuses(u,v)

π(x)π(y) =
1

1
n

1
4

(
(n+ 1)(n− 1)

8

)
1

n2
≈ n

2

Thus by Theorem 3.1, we see that the conductance of this graph satisfies Φ > 1
n
, and thus that

the eigenvalue gap is bounded: 1 − λ2 ≥ 1

8 n2

4

= 1
2n2 . (The eigenvalue gap can be computed

more precisely by other methods, in which case the actual gap is found to be asymptotically

π2

n2 , so our estimate is off only by a constant factor of 2π2.) We can then bound the mixing

time by

τ(ε) <
1

1− λ2

log

(
1

π∗ε

)
= 2n2 log

(n
ε

)
thus demonstrating that this Markov chain exhibits rapid mixing.
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