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Abstract

- In 1995, Jerrum proved a rapid mixing property on a certain Markov chain to solve
the problem of sampling uniformly at random from the set of all proper k-colorings on a
graph with maximum degree ∆. Jerrum’s proof was for the colorings for which k > 2∆.
In 1999, Vigoda improved this bound to k > 11

6 ∆. There has been no improvement for
this problem after that for general graphs. Here, we introduce the problem and Jerrum’s
solution very briefly and then we will show Vigoda’s approach to the problem.

1 Introduction

Consider a graph G = (V,E) and a labeling σ of the vertices with colors from the set C =
{1, . . . , k}. We call such a labeling, a k-coloring on graph G. If neighboring vertices have
different colors then the coloring is called a proper k-coloring. The problem we are here
interested in, is to sample uniformly from the set of all proper k-colorings on a graph with
maximum degree ∆.

This problem, other than being interesting from the combinatorial point of view has some
applications in statistical physics and as a result there has been some work by statistical
physicists on the subject[6].

We can use Markov chains to solve the sampling coloring problem. Consider a rapidly
mixing Markov chain which has a state for each proper coloring of the graph so that the
stationary distribution is uniform over all states. We can run that Markov chain until it
is closed enough to the stationary distribution and then sample from it. This gives us a
polynomial randomized approximation scheme for solving the problem.

The simplest Markov chain one can think of is called Glauber dynamics. The Markov chain
is defined as,

• Let the state space be all the proper k-colorings on a graph G = (V,E).

• At each step move from a coloring σ to a coloring σ′ like this,

1. Choose a vertex v ∈ V and color c ∈ C uniformly at random.

2. Let σ′(x) = σ(x) for all x ∈ V, x 6= v.

3. If setting σ′(v) = c results in a proper coloring then σ′(v) = c, else σ′(v) = σ(v).

Jerrum proved the following theorem, for mixing time of Glauber dynamics.
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Theorem. (Jerrum[2]) Let G be a graph of maximum degree ∆ and n vertices. Assuming
k > 2∆, the mixing time τ of the Glauber dynamics for G and k is bounded above by

τx(ε) ≤
k

k − 2∆
n ln(

n

ε
)

regardless of the initial state.

The condition k > 2∆ in Jerrum’s theorem was improved by Bubley, Greenhill and Dyer[3]
for Glauber dynamics of 5-colorings when ∆ is at most three and of 7-colorings on triangle
free four-regular graphs. Their proof relies on computer aid for solving linear programs.

Vigoda, in his paper[1], introduces a new Markov chain which he calls flip dynamics. He
proves rapid mixing property for this Markov chain where the number of colors k, and the
maximum degree ∆, of the underlying graph satisfy ∆ > 11

6
. His paper is remarkable since it

has the advantages of improving the 2∆ barrier for arbitrary general graphs and also it is not
computer assisted. He also uses flip dynamics rapidly mixing property to show rapidly mixing
property for Glauber dynamics for k-colorings on the graphs with maximum degree ∆ when
k > 11

6
∆.

In the following sections, we briefly go through Vigoda’s paper.

2 Vigoda’s Bound

As we said previously, Vigoda introduced a new Markov chain, named flip dynamics. For this
Markov chain he proves the following theorem.

Theorem. (Vigoda[1]) Let G be a graph of maximum degree ∆ on n vertices. Assuming
k > 11

6
∆, the mixing time τ of the flip dynamics for G and k is polynomial in n1.

In order to prove this theorem Vigoda uses path coupling.
In this section we first define Vigoda’s chain. Then, we show how he does the coupling

which gives him the desired polynomial mixing time. Then, we state the theorem for Glauber
dynamics.

2.1 Vigoda’s markov chain

In order to define the flip dynamics we first need some notations.2

• For a coloring σ, we will refer to a path v = x0, x1, ..., xl = w as an alternating path
between vertices v and w using colors c and σ(v) if, for all i, (xi, xi+1) ∈ E, σ(xi) ∈
{c, σ(v)} and σ(xi) 6= σ(xi+1).

• We let Sσ(v, c) denote the following cluster of vertices.

Sσ(v, c) =

{
w| there exists an alternating path between

v and w using colors c and σ(v)

}
(1)

Let Sσ(v, σ(v)) = ∅.
1In [1], the theorem is stated more precisely. i.e. the mixing time is bounded by O(nk log(n))
2All the definitions in this section are from Vigoda’s paper[1]
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• In flip dynamics the transitions between states of the Markov chain are defined as follows:

– Choose a vertex v ∈ V and color c ∈ C uniformly at random.

– Let α = |Sσ(v, c)|. With probability pα
α

, ’flip’ cluster Sσ(v, c) by interchanging
colors c and σ(v) on the cluster. The parameters pα are chosen to satisfy certain
conditions that will be helpful in proving the rapidly mixing property.3

In fact, we wish to flip each cluster with probability pα. We divide pα by factor α, since
there are α ways to pick the cluster. This is because, for every vertex x in the cluster
Sσ(v, c), we have, Sσ(x, c) = Sσ(v, c) or Sσ(x, σ(v)) = Sσ(v, c).

Suppose for now, that the state space of the Markov chain is the set of all proper
colorings.4

All the definitions above give us our Markov chain. It is not very hard to check aperiodicity
and irreducibility of this Markov chain. As a result, we can conclude that this Markov chain has
an stationary distribution. Moreover, the chain is symmetric and therefore, it has a uniform
stationary distribution.

2.2 Vigoda’s Coupling

Before going through Vigoda’s path coupling, we first state the path coupling theorem.

Theorem. (Path Coupling[5])
Let Φ be an integer-valued metric defined on Ω×Ω such that, for all σ, ξ ∈ Ω, there exists

a path η ∈ ρ(σ, ξ) with

Φ(σ, ξ) =
∑
i

Φ(ηi, ηi+1). (2)

Suppose there exists a constant β < 1 and a coupling (σt, ξt) of the Markov chain such that,
for all σt ∼ τt,

E[Φ(σt+1, τt+1)] ≤ βΦ(σt, τt).

Then the chain is rapidly mixing.

To use the path coupling, we let Φ to be the Hamming distance which is the number of
vertices that are colored differently in the two states. If Ω is equal to the set of all proper
colorings, then equation(2) in path coupling theorem can not be satisfied. Consider a pair
of adjacent vertices v and w. Moreover, suppose that σ(v) = η(w), σ(w) = η(v). Thus,
Φ(σ, τ) = 2 but the shortest path in Ω between these states is of length three. To overcome
this problem, we extend Ω to the set of all colorings-proper or improper. It is not very hard
to see that the improper colorings are transient states in the Markov chain and therefore they
do not appear in the stationary distribution and as a result the stationary distribution is still
the uniform distribution over all proper colorings.

Now consider two neighboring states σ and τ such that they differ only in vertex v. We
aim to introduce a coupling for σ, τ so that the expected change of Φ(σ, τ) under this coupling

3For more detail see [1] page. 6.
4For a reason that we will explain in the next subsection, we will extend the state space of this Markov

chain to the set of all colorings of a graph- proper and improper colorings.
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is negative. It is not very hard to see that the set D of clusters which might be different in σ
and τ are

• Sσ(w, τ(v)), Sτ (w, σ(v)) for any neighbor w of v,

• Sσ(v, c), Sτ (v, c) for any color c.

We partition D to sets Dc. Each set Dc consists of colors c, σ(v) and τ(v). Let,
Γc = {w|σ(w) = c, w is a neighbor of v},
Dc = {Sσ(v, c), Sτ (v, c)} ∪ {Sσ(w, τ(v)), Sτ (w, σ(v))}w∈Γc

We should note here that for c = σ(v), τ(v) the sets may intersect. That issue is not very
important and is handled as a special case in Vigoda’s paper.

The idea for coupling is to couple the clusters in each partition together. Suppose f is the
function that specifies the coupling such that if we choose a move in σ that flips cluster S,
then f defines the coupled move in τ that moves cluster f(S) in τ .

• For S /∈ D, f(S) = S.

• For S ∈ Dc, f(S) ∈ Dc. We try to set f(S) so that size of f(S) is close to size of S.

In order to find a good way to couple the clusters in Dc, consider the following equations
that can be easily proved. Let Γc = {w1, ..., wδc},

For c 6= σ(v), Sσ(v, c) = {∪iSτ (wi, σ(v))} ∪ {v}.
For c 6= τ(v), Sτ (v, c) = {∪iSσ(wi, τ(v))} ∪ {v}.
Let ai = ai(c) = |Sτ (wi, σ(v))|, A = A(c) = |Sσ(v, c)| ≤ 1 +

∑
i ai. Similarly, let bj =

bj(c) = |Sσ(wj, τ(v))|, B = B(c) = |Sτ (v, c)| ≤ 1 +
∑

j bj. Let amax = maxi ai and imax is the

corresponding index for amax (similarly for bmax and jmax). Now, we do the coupling.5

• We couple the big flips, Sσ(v, c) and Sτ (v, c), with the largest of the other flips,

Sτ (wimax , σ(v)), Sσ(wjmax , τ(v)).

Since each cluster should be flipped by probability pα where α is its size, we need to perform
some other coupling on the same clusters so that the weight by which each cluster is flipped
is equal to pα.

• For each wi, couple together (as much as possible) the remaining weights of flips,

Sσ(wi, τ(v)), Sτ (wi, σ(v)).

Having this coupling, Vigoda proves E[∆Φ] ≤ −k+ 11
6

∆

nk
. Therefore, using path coupling

theorem, we have the mixing property for k > 11
6

∆.

2.3 Comparison with Galuber dynamics

By having a bound on mixing time of flip dynamics, Vigoda uses the comparison theorem of
Diaconis and Saloff-Coste [4] to prove the same bound for Glauber dynamics.

Theorem. The Glauber dynamics is rapidly mixing, with mixing time O(n2k log n log k), pro-
vided k > 11

6
∆.6

5Here we just give the idea of Vigoda’s coupling for my detail you can see [1], Page. 9.
6[1]
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3 Conclusion and further work

For the Glauber dynamics, it seems that we can not improve the coupling better than what
Jerrum did. The main idea of Vigoda’s paper was changing the chain and flipping clusters
instead of vertices.

After Vigoda’s paper, there have been other efforts to improve the bound. Although there
has been some improvement on some special graphs7, there has not been any improvement for
bound on general graphs.

There is a paper by Dyer et all [7] which proves that, for every ε > 0, the Glauber dynamics
converges to a random coloring within O(n log n) steps assuming k = k0(ε) and either: (i)
k
∆
> α + ε where α ≈ 1.763 and the girth g = 5, or (ii) k

∆
> β + ε where β ≈ 1.489 and the

girth g = 7.
In another paper, Hayes and Vigoda [8] proved O(n log n) mixing time of the Glauber

dynamics for k > (1 + ε)∆ for all ε > 0 assuming ∆ = Ω(log n) and the girth g > 11.
We end the discussion by pointing out several open questions:

• Combining the proofs of Dyer et al [7] and Hayes and Vigoda [8], can one prove O(n log n)
mixing time of the Glauber dynamics for girth g > 11 graphs when k > (1 + o(1))∆ or
even k > (1 + ε)∆ for all ε > 0 with ∆ > ∆0 where ∆0 is a constant (that grows with
1/ε)?

• Can one remove the girth restrictions at least for k > 1.763∆?

• Can the approach of Vigoda [1] be pushed below 11
6

∆?
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