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Abstract

The equivalence of random walks on weighted graphs with reversible Markov chains
has long been known. Another such correspondence exists between electric networks
and these random walks. Results in the language of random walks have analogues in
the language of electric networks and visa versa. We outline this correspondence and
describe how to translate several of the major terms of electric networks into the language
of random walks.

Given a random walk on the weighted graph G = (V,E) and u, v ∈ V , the commute
time Cuv between u and v is the expected number of steps for a random walk starting at
u to pass through v and return to u. The cover time CG is the expected number of steps
for a random walk to hit every point. In the second section, we prove that Cuv is equal
to the product of 2|E| and the effective resistance between u and v in the corresponding
electric network following an approach first demonstrated in [1]. The proof highlights
several ideas previously discussed. We then use this result to prove bounds for CG.

1 Random Walks and Electric Networks

The existence of a correspondence between random walks on graphs and electrical networks

was first established in [4]. Both systems are governed by graphs which have values attached to

the edges, weight and resistance respectively. More importantly, the physical process electric

networks model is intimately related to walks on graphs. An electrical network governs the

aggregate flow of electrons through the circuit. However, the behavior of an individual electron

is thought to approximate a random walk through the nodes of the network. We can then

view the electric network as Monte Carlo approximation of this random walk on a scale that

eliminates all detectable error. With this in mind, we set out to discover how the aggregate

behavior defines the underlying random walk.

Our initial objective is to relate the weights on edges of the graph with the resistance of

edges in the electric network. Let G = (V,E) be a connected weighted graph. Here, each
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Figure 1.

crr

rr

r

ac

ad

cd

bd

bc

edge is represented by the pair (euv, cuv) where u, v ∈ V and cuv > 0 is the weight of the edge

between them. Let N(u) denote the neighbors of u in G. Recall the random walk on G is the

Markov chain with state space V and transition probability

Puv =
cuv∑

w∈N(u) cuw
. (1)

Our choice to denote the weight of an edge with c is not incidental. Let N be an electric

network with underlying graph G. For u, v ∈ V with euv ∈ E, we define ruv to be the

resistance on euv. Then the conductance of euv is cuv = 1/ruv. As defined, the capacitance

corresponds directly to the weight of euv in G. Note that as weight encourages passage across

an edge while resistance reduces the chance an edge is traversed, this choice makes an intuitive

sense which will be born out in later computation.

We work through an example presented in [2], from which Figures 1 and 2 are appropriated.

In Figure 1, we see an electric network and the corresponding weighted graph. Figure 2 shows

the resulting probabilities for transition along each edge computed using (1). Note that from

the transition probabilities, we can construct all of the conductances up to a constant factor.

In this construction, the probabilistic significance of resistance is readily understood. How-

ever, in order to discuss voltage or current we need to introduce electricity to our network.

The choice of how to do so will effect what these quantities measure. Perhaps the simplest

way to do so would be to put a one volt battery connecting some vertices a and b so that the

respective voltages va = 1 and vv = 0. In this case, the voltage at some u ∈ V would indicate
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Figure 2.

the probability of a random walk starting at u of hitting a before b. In general, voltages

correspond to some sort of hitting time.

Viewing an electric network as the aggregate behavior of electrons, one might suspect that

current corresponds in some way to how often an edge is traversed. Such a suspicion is correct.

In particular, when a unit current flows into some a and out of some b, the current iuv across

the edge euv corresponds to the expected net number of times that edge is traversed in a

random walk starting at a and terminating upon arrival at b. Note, we then have iuv = −ivu
as one would expect.

These results are proved by establishing how both interpretations depend on their neighbors

and reducing these dependences to two systems of linear equations, each of which has the same

unique solution. We will see an example of this proof technique in Theorem 2.1.

2 Commute Time as Resistance

Given a graph G = (V,E) with u, v ∈ V recall the hitting time Huv is the expected number

of steps for a random walk on G starting at u to first enter v. We define the commute time

to be Cuv = Huv +Hvu, that is the expected number of steps for the random walk on G to go

from u to v and back again. Before we can determine how to compute the commute time, we

must discuss some basic properties of electric networks.
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Several important laws govern the relationship between current, voltage and resistance.

Perhaps the most fundamental is Ohm’s law, which states that voltage is current times resis-

tance, i.e. V = IR. We will also need Kirchoff’s law, which states
∑

v∈N(u) iuv = 0 for all

u ∈ V . This can be loosely interpreted as saying what goes in must come out; an electron

cannot stay at u. Finally, the effective resistance Ruv between vertices u and v, not necessarily

connected, can be computed using the rule that circuits in series are additive in resistance

while circuits in parallel are additive in conductance. This resistance describes the overall

difficulty of getting from u to v or visa versa.

As an example of how effective resistance is computed, we find Rac in Figure 1. First, we

combine the edges edb and ebc into a new edge with resistance 3/2 between d and c. There are

now two edges between these vertices with conductances 2 and 2/3 respectively, so combining

them we have a single edge e′cd with total conductance of 8/3, hence resistance 3/8. This

edge is combined with ead to form a new edge between a and c with resistance 11/8, hence

conductance 8/11. Combining this with the conductance of 1 on the original edge eac, we see

the effective conductance between a and c is 19/11 so the effective resistance Rac = 11/19.

We are now prepared to prove our first theorem.

Theorem 2.1. For G = (V,E) a simple graph with |E| = m and u, v ∈ V we have

Cuv = 2mRuv.

Proof. For v ∈ V , recall N(v) ⊂ V is the collection of neighbors of v and define d(x) = |N(x)|.

Let φuv denote the voltage at u with respect to v in N (G) when d(x) units of current are

introduced to each vertex x and all 2m units of current are removed at vertex v where. Note,

as G is simple every edge in N (G) has unit resistance. For all u ∈ V \ {v}, we observe that

d(u) =
∑

w∈N(u)

iuw =
∑

w∈N(u)

(φuv − φwv) = d(u)φuv −
∑

w∈N(u)

φwv (2)

with the first inequality by Kirchoff’s law, the second by Ohm’s law with every resistance one

and the third by arithmetic. Additionally, for all u ∈ V \ {v} we see

Huv = 1 +
∑

w∈N(u)

Hwv

d(u)
(3)
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as after one step, we have moved with probability 1/d(u) to a w ∈ N(u), after which our

hitting time is Hwv. Note that by equation (2), we have

d(u)φuv = d(u) +
∑

w∈N(u)

φwv ⇒ φuv = 1 +
∑

w∈N(u)

φwv

d(u)
, (4)

so Huv and φuv satisfy the same system of equations and thus, by the uniqueness of such

solutions, are the same.

We have now shown that Huv is the voltage at u with respect to v in N(G) when d(x) units

of current are introduced to each vertex x and all the current is removed at v. If we reverse

the flow of current so that 2m is added at v and d(x) is removed at each vertex x, we see Huv

is the voltage at v with respect to u.

By adding 2m current at u and removing d(x) current at each vertex x, we get the voltage

at u with respect to v to be Hvu. On the original network, the voltage at u with respect to

v is Huv. Superposing these networks, we have the voltage at u with respect to v to be the

commute time Cuv. In doing so, the current has canceled at every vertex with the exception

of 2m current added at u and 2m current removed at v. By Ohm’s law, we see Cuv = 2mRuv

with Ruv the effective resistance between u and v.

As we saw in the proof, the commute time is essentially a measurement of voltage when

the appropriate amount of current is introduced. It should also be noted that the above result

can be expanded to weighted graphs quite readily. The only place we used the assumption of

unit resistance on each edge was equation (2), which can be skirted by replacing 2m in our

statement with a sum relying on the resistances of each edge.

We define the cover time Cx to be the expected number of steps it takes for a random walk

starting at x to hit every vertex. The cover time of the graph is CG = maxx∈V Cx. Because the

maximum commute time in some sense conveys the largest possible obstruction to covering

our graph, we can use it to find bounds on commute time.

Theorem 2.2. Let R = maxu,v∈V Ruv and G = (V,E) with |V | = n and |V | = m. Then

mR ≤ CG ≤ 2mR(1 + log n).
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Proof. Clearly CG ≥ maxu,v∈V Huv, so as max{Huv, Hvu} ≥ Cuv/2 = mR by Theorem 2.1, we

have our lower bound. The upper bound follows from a result in [3] bounding CG above by the

product of the maximum hitting time H and the nth harmonic number. Since H is strictly

less than the maximum commute time, we derive the upper bound by Theorem 2.1.

It bears mention that there is another theorem providing a second upper bound for CG.

This result requires more notation than we wish to develop at present, though the proof again

reduces to using Theorem 2.1 to improve a previous result. Together, these theorems provide

bounds for many classes of graphs more accurate than previously existed. In some instances,

these bounds can be sharp. Additionally, the role of resistance helps clarify why situations

exist where adding edges actually increases covering time.

These results merely scratch the surface of what is possible when representing random

walks as electric networks. Any concept in one setting can be expressed within the language

of the other. Hopefully, the reader is persuaded that this connection is fruitful.
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