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Abstract

First, we will briefly introduce oriented percolation with our focus on a special ori-
entation on the square grid. Then we will discuss critical probabilities of bond or site
percolation on this particular orientation. Finally, we will introduce the Fire-fighting
Problem and prove a theorem regarding an upper bound for these critical probabilities
in the case that fractional fire-fighters were allowed to close some open sites.

1 Preliminaries

Let Λ be a connected, infinite, and locally finite simple graph. An orientation on Λ is obtained

by putting a direction on every bond. The resulting digraph is denoted by
−→
Λ . Depending on

whether we are considering bond or site percolation, we will assume that bonds or sites are

open with probability p ∈ (0, 1). An oriented path is a finite or infinite path P = x0x1x2 . . . in
−→
Λ with each bond oriented from xi to xi+1. In oriented bond (respectively, site) percolation,

an open path P is an oriented path with each bond (respectively, site) open. For a given

site x, C+
x the open out-cluster of x is defined as the set of all sites y for which there is an

open oriented path connecting x to y. Moreover, one may define θ+
x (p) = Pp(|C+

x | = ∞) and

χ+
x (p) = Ep(|C+

x |). For clarity and simplicity, we will use “b” or “s” – depending on whether

we are discussing bond or site percolation – instead of the “+” sign in the aforementioned

definitions. As it is true in the non-oriented percolation, θc
x(p) and χc

x(p) – where c ∈ {b, s}

– are increasing functions of p and there are critical probabilities P c
H(

−→
Λ ; x) and P c

T(
−→
Λ ; x)

such that for all p > P c
H(

−→
Λ ; x) (respectively, p > P c

T(
−→
Λ ; x)), we have θc

x(p) > 0 (respectively,

χc
x(p) = ∞).
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2 Critical Probabilities of the Oriented Square Grid

Suppose
−→
Z2 is the oriented square grid in which horizontal and vertical bonds are oriented

from left to right and bottom to top, respectively. Since this digraph is site transitive, for all

x, y ∈
−→
Z2, we have P c

H(
−→
Z2; x) = P c

H(
−→
Z2; y) and P c

T(
−→
Z2; x) = P c

T(
−→
Z2; y); therefore, we may only

consider these critical probabilities for the origin and denote them by P c
H(

−→
Z2) and P c

T(
−→
Z2).

Our first objective in this paper is to find a lower bound and an upper bound for these critical

probabilities.

One noteworthy observation is that, since the open paths in
−→
Z2 are also open paths in

Z2, percolation in Z2 dominates that in
−→
Z2. As a result, we have P c

H(
−→
Z2) ≥ P c

H(Z2) and

P c
T(
−→
Z2) ≥ P c

T(Z2). Also, using the exploration method, one can show that P s
H(

−→
Z2) ≥ P b

H(
−→
Z2)

and P s
T(
−→
Z2) ≥ P b

T(
−→
Z2). A detailed proof is given in Theorem 5 on p. 27 in [1]. Putting these

observations together and assuming that −→ represents the relation ≤, we have the following

Hasse diagram:

P s
H(Z2) // P s

H(
−→
Z2)

P s
T(Z2)

::uuuuuuuuuu
// P s

T(
−→
Z2)

::uuuuuuuuu

P b
H(Z2)

OO

// P b
H(

−→
Z2)

OO

P b
T(Z2)

OO

::uuuuuuuuuu
// P b

T(
−→
Z2)

OO

::uuuuuuuuu

Based on this diagram, to find a lower bound and an upper bound for these critical prob-

abilities, we only need to find a lower bound for P b
T(Z2) and an upper bound for P s

H(
−→
Z2). But

we know that P b
T(Z2) = 1/2. Before proceeding with the upper bound, we will take a detour.

3 Fire-fighting on Infinite Graphs

The Fire-fighter Problem was first introduced by Hartnell [3] in 1995. For a survey of results,

see [2]. Let Λ be a be a connected, infinite, and locally finite simple graph. A fire starts at a
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site b0 at time t = 0 (time increases discretely in one unit increments). t increases by one and

then on, for each time unit there are f fire-fighters (f is a fixed positive integer) on reserve to

protect sites in Λ not yet affected by the fire. When protected by a firefighter, a site remains

protected for rest of this process. At t = 1, let’s assume that the sites that are protected

by fire-fighters are P ′
1 = {p1, p2, . . . , pf} where pi is distinct from b0. After deploying these

fire-fighters, the fire spreads to any unprotected neighbors of b0 and then, t increases by one.

When burned, a site remains burned for the rest of this process. We will use the pair (Pk, Bk)

to represent the protected and the burned sites, respectively, by time t = k. Recursively, we

have Pk = Pk−1 ∪ P ′
k and Bk = Bk−1 ∪ (N(Bk−1) − Pk) where B0 = {b0}, P0 = ∅ and P ′

k is

the set of previously unprotected and unburned sites that one will protect at t = k. In case of
−→
Λ an oriented graph, fire spreads only through out-bonds of a site.

In the above setting, one assumes that f is a fixed positive integer, but one can also assume

that f is a fraction a/b with 0 < a < b and one will deploy a fire-fighters after every b time

lapses.

4 Main Theorem

Theorem 1. Let f ∈ (0, 1/2) be a fixed fraction. Let fire starts at the origin in
−→
Z2 with sites

open with probability p > f . Consider sites that are closed, protected from the fire by default

while open sites can be impacted if not protected by fire-fighters. If p > 1 − (1/9)(1/2−f)−1
, the

fire can not be contained.

Before we start with the proof of the above theorem, we need to state the following theorem

whose proof can be found in [4].

Theorem 2. (Chernoff-Hoeffding) Let X1, X2, . . . , Xn be i.i.d with Xi ∈ {0, 1} and p = E[Xi]

for i = 1, 2, . . . , n. Then for ε > 0

P[
1

n

n∑
i=1

Xi ≥ p + ε] ≤
(
(

p

p + ε
)p+ε(

1 − p

1 − p − ε
)1−p−ε

)n
(†)

and

P[
1

n

n∑
i=1

Xi ≤ p − ε] ≤
(
(

p

p − ε
)p−ε(

1 − p

1 − p + ε
)1−p+ε

)n
. (‡)
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Note that (‡) can be derived from (†) by using Yi = 1 − Xi instead of Xi. Define D as

D(x, y) = x ln(
x

y
) + (1 − x) ln(

1 − x

1 − y
)

which simplifies the right-hand side of (†) and (‡) to exp[−D(p+ε, p)]n and exp[−D(p−ε, p)]n,

respectively. Moreover, using calculus, one can show that for x ∈ (0, 1/2) fixed and y ∈ [x, 1),

D(x, y) is a strictly increasing non-negative function. Consequently, exp[−D(x, y)] ≤ 1.

Proof of Theorem 1: Let C0 be the set of sites that can be reached from the origin

by open paths. So if we do not deploy any firefighters, fire will reach these sites eventually,

depending on their distance from the origin. Suppose that the fire is contained and as a result,

C0 is finite. So there exists an external boundary ∂C∞
0 blocking the fire from getting from the

inside to the outside of this boundary.

Let S be any cycle of length 2l in Z2 ∗ that we traverse counter-clockwise. Suppose S is a

blocking cycle. There are four observations to make: 1) the bonds in S that are blocking the

fire are those who are oriented upward if vertical or leftward if horizontal and this is due to

the orientation on
−→
Z2 and how fire spreads; 2) the number of upward or leftward bonds in S

is equal to the number of downward or rightward bonds. This means that as we traverse S,

we are making a total of l upward or leftward steps; 3) for S to be blocking, any upward or

leftward bond in S must have a protected site to its right; 4) any site can be on the right of

at most one upward and at most one leftward step. Putting these observations together, for

S to be blocking, there are at least l/2 protected sites. Moreover, the distance from the origin

to any site x ∈ Int(S) is at most l which implies that the fire must be contained by t = l.

Consequently, the total number of open sites that were protected by fire-fighters is at most fl.

As a result, at most l/2−fl of these sites were closed and hence, protected by default. On the

other hand, there are at most l sites to the right of an upward or leftward step in S. We want to

show that the probability of the event A : (at most fl of these sites are open) is exponentially

small. Since each site is open independently of other sites with probability p and having a

Bernoulli distribution, by letting f = p − ε and n = l in (‡), we have P[A] ≤ exp[−D(f, p)]l.

It follows that the probability that S is a blocking cycle is bounded from above by

(1 − p)l/2−lf exp[−D(f, p)]l ≤ (1 − p)l/2−lf ,

since f ∈ (0, 1/2) is fixed and p ∈ [f, 1).
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Let Lk be the line segment joining the origin to the point (k, 0) and let Yk be the number

of blocking cycles around Lk. We know that the number of cycles surrounding Lk of length 2l

is bounded from above by 4× 32l−2 and each is blocking with probability at most (1− p)l/2−lf .

As a result, for p > 1 − (1/9)(1/2−f)−1
,

E[Yk] ≤
∑

l≥k+2

l(4 × 32l−2)(1 − p)l/2−lf ≤
∑

l≥k+2

4

9
l(3(1 − p)

1
2
( 1
2
−f))2l

converges and for l large enough, this expected value will be less than one. Since Yk is a

counting random variable, then P[Yk = 0] > 0. Define Ak to be the event that Yk = 0 and

define Bk be event that k + 1 sites in Lk are unprotected. These two events are independent,

since they are disjoint. Moreover, if they both hold, there will be no blocking cycles and the

fire will continue spreading indefinitely with positive probability. Ak and Bk happen with

positive probability; hence, the result.�

Theorem 3. P s
H(

−→
Z2) ≤ 80/81.

Proof: Repeat the previous proof with f = 0. In this case, one need not to consider the

event A. Since p > 80/81 is arbitrary, we have the result.�
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