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Abstract
Smirnov’s celebrated proof [6] of the conformal invariance of crit-

ical site percolation on the triangular grid relies on a number of fun-
damental results from classical complex analysis. The purpose of this
paper is to present these results in a self-contained format that any
non-analysts who are interested in Smirnov’s Theorem will find acces-
sible.

1 Introduction

The usual convention for modeling two-dimensional percolation problems is
to study them on a lattice embedded in R2. However, embedding the lattice
in C instead offers several potential advantages, especially with regards to
the question of conformal invariance. First, the requirements for a function
f : C → C to be differentiable are stricter than the requirements for real
differentiability; this restriction means that complex-differentiable (or holo-
morphic) functions have more desirable properties than is necessarily the
case for real-differentiable functions. Because of this tractability, conformal
maps can be characterized quite neatly in terms of holomorphic functions.

Why are we concerned with conformal maps? The “Conformal Invariance
Conjecture” [5] states that if D ⊆ R2, and Λ is any lattice satisfying certain
symmetry conditions, then if we let Pδ(D) denote the probability that, in
critical percolation on Λδ (the lattice Λ with bond-length δ), there exists an
open path traversing D, the limit

P (D) = lim
δ→0

Pδ(D)
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exists. Furthermore, if f : D → D′ is a conformal map, it is conjectured that

P (D) = P (D′),

and that these probabilities are independent of the choice of lattice Λ.
The first step towards proving the Conformal Invariance conjecture was

taken by Smirnov, who shows [6] that if D,D′ ⊆ C are bounded and simply
connected, then the limiting probabilities P (D), P (D′) exist for site percola-
tion on the triangular lattice, and P (D) = P (D′). In this paper we present
the theorems from complex analysis underlying Smirnov’s Theorem. In par-
ticular, we show that analytic and holomorphic are equivalent characteriza-
tions of complex functions, and that nearly all holomorphic functions are con-
formal. To enable the reader to make use of this equivalence, we then present
two common ways to prove that a function is holomorphic. Finally, we state
but do not prove the Riemann Mapping Theorem and Carathéodory’s The-
orem.

2 Holomorphic and Analytic Functions

We say that a map is differentiable if it can be approximated locally by a lin-
ear transformation. In the case of a function f : R2 → R2, f is differentiable
at ~v if we can find a 2× 2 matrix A~v such that

lim
||~h||→0

f(~v + ~h)− f(~v)− A~v(~h)

||~h||
= 0. (1)

If f is differentiable, and we write

f(~v) = f(v1, v2) = (f1(v1, v2), f2(v1, v2) ),

then

A~v =

∂f1∂v1

∂f1
∂v2

∂f2
∂v1

∂f2
∂v2

 . (2)

If we think about f as a complex function f : C→ C, and ~v = (v1, v2) as
a complex number v = v1 + iv2, then we declare f to be holomorphic at v if
the matrix A~v corresponds to multiplication by a complex number. Since

(a+ ib)(c+ id) = ac− bd+ i(ad+ bc),
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translating our complex numbers c+ id and ac− bd+ i(ad+ bc) into vectors

shows us that the matrix for multiplication by a + ib is

[
a −b
b a

]
. In other

words, the requirement thatA~v represent multiplication by a complex number
forces

∂f1

∂v1

=
∂f2

∂v2

;
∂f1

∂v2

= −∂f2

∂v1

, (3)

the Cauchy-Riemann equations.
Not only are these equalities necessary, they are also sufficient.

Theorem 2.1 (Cauchy-Riemann). A function f : C → C is holomorphic
iff its component functions f1, f2 : R2 → R are real-differentiable and satisfy
(3).

Instead of using 1 and i as our basis for C as a vector space over R, we
could use 1 and ω =

√
−3−1
2

, a cube root of unity. (This direction was pursued
in detail in class on March 2.) Starting from this basis, we can develop a
modified form of the Cauchy-Riemann equations that also characterizes holo-
morphic functions. The relationship between angles on the triangular grid
Λ and the angle between the basis vectors makes it easy to show, via these
modified Cauchy-Riemann equations, that the limit functions f i measuring
the crossing probabilities are holomorphic.

One can check that a function f is holomorphic by showing that it sat-
isfies the Cauchy-Riemann equations; however, when the function’s input
and output are represented in the form z = reit rather than z = x + iy,
understanding the component functions f1, f2 and their derivatives can be
complicated. In these cases, to show that f is holomorphic it’s often eas-
ier to use Taylor’s Theorem, which says that all holomorphic functions are
complex-analytic.

Definition A function f is complex-analytic on an open set D ⊆ C if f
can be locally represented by an (infinite) power series with coefficients in C.
Formally, ∀ z0 ∈ D, ∃ r > 0 such that if |z0 − z| < r, then ∃ {cn}n∈N0 ⊆ C
such that

f(z) =
∑
n≥0

c0(z − z0)
n.

Straightforward calculations show, using the Cauchy-Riemann equations,
that any complex-analytic function is holomorphic at every point z0 ∈ D, so
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we see that “differentiable” and “analytic” are synonymous when applied to
functions f : C→ C.

The proof of Taylor’s Theorem relies on the Cauchy-Goursat Theorem,
which states that if C is any simple1 closed curve in D such that Int(C) ⊆ D,
and f is holomorphic on D, then∫

C

f(z)dz = 0.

Morera’s Theorem asserts that the converse also holds.

Theorem 2.2 (Morera). If
∫
C
f(z)dz = 0 for every closed curve C such that

C and Int(C) ⊆ D, then f is holomorphic on D.

The proof of Morera’s Theorem rests on constructing a holomorphic an-
tiderivative for f ; if f = F ′ for some holomorphic F , then since F is analytic
by Taylor’s Theorem, so is f .

Fixing a point z0 ∈ D, we define

F (z) =

∫
[z0,z]

f(w)dw.

One must then check that F is well defined and holomorphic and that F ′(z) =
f(z); for the details, see [1] or [4], for example.

3 Conformal Maps and Domains

Definition We say that a map f (on C or R2) is conformal if it pre-
serves angles. More formally, f is conformal at p if for any two curves
α, β : (−ε, ε)→ C such that

α(0) = β(0) = p, α′(0) 6= 0, β′(0) 6= 0, (4)

we have
(f ◦ α)′(0)

(f ◦ β)′(0)
=
α′(0)

β′(0)
. (5)

1non-self-intersecting
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To see the equivalence of these two definitions, write

(f ◦ α)′(0)

(f ◦ β)′(0)
=
r1e

it1

r2eit2
=
r1
r2
ei(t1−t2).

This format of writing a complex number – in terms of its radial distance r
from the origin and the angle t its vector makes with the positive real axis
– shows us that the argument, the variable t, of (f◦α)′(0)

(f◦β)′(0)
measures the angle

between the two vectors (or complex numbers) (f ◦ α)′(0) and (f ◦ β)′(0).
Thus, the condition (5) means that f preserves angles and ratios of moduli.

Of course, to satisfy (5), the function f must be holomorphic at p. In
fact, this necessary condition is very nearly sufficient.

Proposition 3.1. If f is holomorphic at p, and f ′(p) 6= 0, then f is confor-
mal at p.

Proof: By the chain rule, if α : (−ε, ε) → C, then (f ◦ α)′(0) =
f ′(α(0))α′(0). Thus, if f ′(p) 6= 0, and α, β satisfy (4), then (5) follows
immediately. 2

Smirnov’s proof that the limiting crossing probabilities are invariant un-
der conformal maps begins by defining certain functions f iδ on the vertices
of the triangular grid Λδ underlying the domain D, and showing that they
measure the probability of an open path crossing D in the i direction. He
proceeds to show that for each i, the sequence {f iδ}δ converges, as δ → 0,
to a holomorphic (and hence conformal) map f i. Bollobás and Riordan [2],
following Smirnov’s original approach, prove this using Morera’s Theorem,
rather than the modified Cauchy-Riemann equations we discussed in class.
Finally, a uniqueness condition guarantees that if φ : D → D′ is a conformal
map, then f i ◦ φ measures the limiting crossing probability on D′. In other
words, once we know the crossing probabilities on D, we also know them for
any domain D′ which is holomorphic to D. (See [2] for the details of the
proof.)

Now that we have characterized conformal maps in terms of holomorphic
maps, a natural next question is to study which subsets of C have conformal
maps between them. Because the proofs of the following results have sim-
ple, elegant statements and long, convoluted proofs, we present merely the
statements here, referring the reader to [1] for the details.

Theorem 3.2 (Riemann Mapping Theorem). If D is any simply connected
proper open subset of C, then there exists a conformal bijection φ between D
and the open unit disc B1(0).
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In other words, we have a conformal map between any two simply con-
nected, proper, open subsets of C.

Theorem 3.3 (Carathéodory). If φ : D → B1(0) is a conformal map, and
∂D is a simple closed curve, then φ extends to a homeomorphism φ̂ : D →
B1(0).

These theorems are really what enable us to reap the benefits of confor-
mal invariance; since all reasonable domains are conformally equivalent, once
we know the crossing probabilities for one such domain, Smirnov’s Theorem
combines with the Riemann Mapping Theorem to tell us the crossing prob-
abilities for all of them. Moreover, years before Smirnov’s proof, Cardy [3]
and Carleson calculated what these probabilities should be in the case of an
equilateral triangle with vertices at 1, ω, and ω2, and the proof of Smirnov’s
Theorem confirms their formula. Thus, we can calculate explicitly the cross-
ing probabilities for any domain D ⊆ C whose boundary is a simple closed
curve.

References

[1] A.F. Beardon (1979). Complex analysis, Wiley.

[2] B. Bollobás and O. Riordan (2006). Percolation, Cambridge U. Press,
Cambridge UK.

[3] J.L. Cardy (1992). Critical percolation in finite geometries. J. Phys. A
25, L201-L206.

[4] J.B. Conway (1978). Functions of One Complex Variable 1, Springer.

[5] R.P. Langlands, P. Pouliot, Y. Saint-Aubin (1994). Conformal invariance
in two-dimensional percolation. Bull. Amer. Math. Soc. 30, 1-61.

[6] S. Smirnov (2001). Critical percolation in the plane: conformal invariance,
Cardy’s formula, scaling limits. C.R. Acad. Sci. paris Sér. I Math. 333,
239-244.

6


