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Abstract

Let r be a nonnegative real number. Attach a disc of radius r to infinitely many
random points (including the origin). Lilypad percolation asks whether we can reach
infinity from the origin by walking through ‘lilypads’, that is, moving from one disc to
another only if the discs overlap. In this paper, we explain what we mean by infinitely
many random points, giving a definition of a Poisson Random Process. We also prove a
theorem showing some lower bounds for r where we percolate and some upper bounds for
r where we are stuck in finite land. We end with some remarks on other developments
and numerical results, connecting lattice percolation models with continuum percolation
models.

1 Introduction

Given a real positive number λ, we pick infinitely many points (including the origin) randomly

with density λ, that is, in a figure U of area |U | the expected number of points is λ · |U | (λ

points per unit area). The way we achieve this is by doing a Poisson process, which I shall

describe in Section 2. What a Poisson process does is give us a way to pick infinitely many

points randomly in a way where we get nice independence conditions.

Now that we have an infinite set of random points, given a real positive r, we attach a disc

of radius r to each point. Now, we’d like to know if with positive probability we can reach

infinity from the origin by walking through the discs (lilypads). In other words, the question

is whether we can percolate. In contrast to the case with percolation on the grid, where there

is a critical probability, in this problem we have a critical area, since making it to infinity

depends on r and λ, not on some probability. Let Dr,λ be the graph where the vertices are

the random points we get through a random process of density λ, and where two points have

an edge iff their discs overlap. This would be the lilypad graph.
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Consider the graph Gr,λ defined by picking infinite random points with density λ to be

the vertices and drawing an edge if the distance between two points is ≤ r. The question of

whether Gr,λ percolates is very similar to the lilypad model. In fact G2r,λ percolates iff Dr,λ

percolates. The graphs are not isomorphic because of possible overlaps, but the question of

percolation is identical, hence studying Gr,λ is the way to go.

Note that the degree of a vertex in Gr,λ is the number of points inside the disc of radius

r, which has area πr2λ, therefore the expected degree of a vertex is πr2λ. The structure of

Gr,λ depends only on the degree, so we can think of G(a) for any graph Gr,λ where a = πr2λ

is constant.

The critical degree ac is the number such that for all a < ac G(a) does not percolate and

for a > ac, G(a) percolates with positive probability. In section 3, I will prove the following

theorem:

Theorem 1.1 (Hall).
2π log 2

3
√

3
≤ ac ≤

26π log 2

3
√

3
.

In Section 4, we’ll do a slight improvement of the upper bound due to Hall [5]. In section

5 we’ll use a different technique to get a better lowerbound due to Gilbert (in fact, lilypad

percolation is also known as Gilbert percolation due to his 1961 seminal paper [2]) . This lower

bound uses very different techniques. In Section 6 we’ll mention several other results without

proof.

2 Poisson Process

Let λ be a positive real number, and let Pλ ∈ R2 be a random countably infinite set of points

in the plane. Let µ(U) be the the number of points Pλ in a bounded Borel set 1. Pλ is a

homogeneous Poisson process of density λ if for n pairwise disjoint Borel sets Ui, µλ(Ui) are

independent and for every bounded Borel set U , µλ(U) is a Poisson random variable with

mean λ|U | where |U | is the standard measure of U .

1In case, you’re wondering, a Borel set is the union or intersection of a bunch of open,or closed sets. For
generality, we want to use Borel sets, but in Gilbert percolation we’re mostly interested in nice sets like figures
such as hexagons
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One possible construction (which can be shown turns out to be the only such random

process) is the following:

For λ > 0, let {Xi,j : (i, j) ∈ Z2} be independent Poisson random variables, each with

mean λ. Thus,

P(Xi,j = k) = e−λ
λk

k!

for k = 0, 1, 2, . . .. Let Qi,j be the unit square with bottom left vertex (i, j) ∈ Z2, select Xi,j

points independently and uniformly from Qi,j, then the union of all these sets satisfies the

properties needed to be a Poisson process, so we’ll use this as our definition of Pλ.

3 Critical Area: The Easy Bounds

Proof of Main Theorem. Consider a hexagon lattice with side s. Consider a face to be open if

it contains a point from Pλ and closed otherwise. A face is closed with probability P(X = 0) =

e−λA where A is the area of the hexagonal face, that is A = 3
√
3

2
s2. Therefore, a face is open

with probability 1 − e−λA. Now, face percolation on the hexagon lattice is equivalent to site

percolation on the triangular lattice which has critical probability p = 1
2
. Since p = 1− e−λA,

e−λA = 1
2
, therefore λA = log 2. Letting λ = 1 we have A = log 2, hence s2 = 2 log 2

3
√
3

. Giving us

the critical threshold with respect to s for face percolation on the hexagonal lattice.

Now, we have to relate this back to the disc percolation. When trying to find a lowerbound,

we want to fail at percolation, hence we want s2 < 2 log 2

3
√
3

. The hexagonal lattice failing is

not enough to make the disc fail, because we could have two points in the same disc while

being in non-adjacent hexagonal faces. To force the failure of hexagonal percolation to imply

lilypad failure, we need to have r < s since s is the closest distance between two non-adjacent

hexagonal faces. Then, we have a = πr2 < πs2 < 2π log 2

3
√
3

. Since λ = 1, we have that for any

a < 2π log 2

3
√
3

percolation fails, giving us ac ≥ 2π log 2

3
√
3

.

Let’s do the upper bound. In this case we want to percolate, so we want s2 > 2 log 2

3
√
3

. The

hexagonal lattice percolating is not enough to guarantee that the disc percolates; we need to

guarantee that any two points in adjacent hexagonal faces are contained in the same disc.

Using law of cosines and the Pythagorean theorem we can show that the distance between the

two farthest apart points between two adjacent hexagonal faces is
√

13s. Therefore we want
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r >
√

13s, giving us that a = πr2 > 13πs2 > 26π log 2

3
√
3

, showing that ac ≤ 26π log 2

3
√
3

2.

The theorem shows numerically that 0.838153 . . . ≤ ac ≤ 10.896 . . ..

I would like to point out that since for lilypad percolation we care about r in G2r,λ, we

could show that the critical radius is between 0.25826 . . . and 0.931169 . . .. This shows that if

r = 1 then the radius is big enough for a path to infinity to happen among the lilypads.

4 Critical Area: Improving the upper bound

Theorem 4.1 (Hall).

ac ≤
12π log 2

3π − 18 arcsin
(
1
4

)
− 9

√
3(
√
5−1)

8

= 10.588 . . . .

Proof. The idea of the proof is to keep using the hexagonal lattice, but now instead of making

a face open if there is a point from Pλ in the hexagon, we will make it open if there is one

in the rounded hexagon. The rounded hexagon is built as follows: take an hexagon of side s,

now from every midpoint of a segment draw a circle of radius
√

3s which is the distance to the

opposite midpoint (by Pythagoras). The rounded hexagon consists of the figure that remains

in the middle, it has six vertices but the edges are rounded instead of straight.

Figure 1: A Rounded Hexagon.

Since the area of the rounded hexagon is smaller, it seems that we give away our chances

to percolate, however now the distance between two points from two adjacent hexagons is

2You may notice that the proof depends on percolation on the hexagonal lattice which had not been proved
in Gilbert’s time (1961).
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bounded by
√

12s since the largest distance between any two points inside a rounded hexagon

is
√

3s (by our construction), so for adjacent hexagons we get 2
√

3s =
√

12s. Hence to

percolate we want r >
√

12s and A > log 2 where A is the area of the rounded hexagon.

Let’s find the area of the rounded hexagon. Following Figure 2, let O be the center of the

hexagon, let P be a midpoint of a segment of the hexagon and Q the opposite midpoint. Let

S be a vertex of the hexagon as shown in Figure 2. Let T be the intersection of the circle with

center in P and radius
√

3s with OS, that is a vertex in the rounded hexagon. Notice that

the area of the rounded hexagon is twelve times the area of (OQT). To calculate (OQT) we

will calculate (PQT) and substract (4POT).3

The area of (PQT) is easy, as it is a portion of the circle of radius
√

3s. If we let α be the

angle ∠TPQ and β = ∠PTO then (PQT) = 1
2
α(
√

3s)2 = 3
2
αs2.

To calculate the area 4POT we will need to play around with angles and lenghts. PO =
√
3
2
s because it is half the radius and PT =

√
3s because it is the radius. ∠POT = 150

degrees. Using that sin(150) = 1
2

and law of sines on 4POT we find that sin β = 1
4

and

cos β =
√
15
4

. Now sinα = sin (30− β) = sin 30 cos β − sin β cos 30 =
√
15
8
−
√
3
8

=
√
3
8

(
√

5− 1).

Therefore (4POT) = PT·PO·sinα
2

= 3
√
3(
√
5−1)

32
s2.

Using that α = π
6
− β we see that α = π

6
− arcsin(1

4
). Using this in (PQT) and plugging in

3I write parenthesis to mean area. If a triangle is not displayed to the left of the letters the figure has at
least one segment that is not a straight line.

Figure 2: The red area is (4POT) and the gray area is (OQT)
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(4POT) and multiplying by twelve we get that the area of the rounded hexagon is

A =

(
3π − 18 arcsin(

1

4
)− 9

√
3(
√

5− 1)

8

)
s2.

Combining that A > log 2 and that r >
√

12s, we find the upper bound we were looking

for.

5 Critical Area: Improving the lower bound

Theorem 5.1 (Gilbert).
6π

2π + 3
√

3
= 1.642 . . . ≤ ac.

4

Proof. Let C0 be the vertex set of the component of the origin in Gr = Gr,1. We shall use

an algorithm to find the points of C0 one by one. We will want a sequence of disjoint sets

of points (Di, Li). To start the sequence D0 = ∅ and L0 = {X0} = 0. Next, let N0 be the

set of neighbors ofX0, and set D1 = {X0} and L1 = N0. If L1 = ∅ then we’re done and

C0 = D1 = {X0} finite. If L1 6= ∅ then pick X1 ∈ L1 and defineD2 = D1

⋃
{X1} = {X0, X1}.

Now let N1 be the set of neighbors of X1 that are not neighbors of any of the points in D1

(that is, not neighbors of X0). L2 = N1

⋃
L1 − {X1}. We keep on doing this process, to

be more specific, if we have up to (Dt, Lt), then if Lt = ∅ then we are done, otherwise, pick

Xt ∈ Lt and define Dt+1 = Dt

⋃
{Xt} = {X0, X1, . . . , Xt}. Let Nt be the set of neighbors of

Xt that are not neighbors of any of the points Dt. Now Lt+1 = Nt

⋃
Lt − {Xt}.

By the way we’re building these sets, we can see that Dt and Lt are disjoint and Dt

⋃
Lt ⊂

C0. Also, since any disc of radius r contains finitely many points, Dt and Lt are finite.

Furthermore, if Lt = ∅, then Dt = C0, which would imply the origin does not percolate.

Dt − {X0} = {X1, X2, . . . , Xt−1} ⊂
t−2⋃
i=0

Ni, implying that |Dt| − 1 = t− 1 ≤
t−2∑
i=0

|Nt|.

Let Vt be the disc of radius r with centre Xt, and set Ut =
t⋃

s=0

Vs (the area of all the discs so

far). Conditioning on the points X0, X1, . . . Xt, |Nt| is a Poisson random variable with mean

|Vt − Ut−1|. What is going on, is that the set of neighbors that aren’t neighbors of things in

Dt has area Vt−Ut−1 and since it is a Poisson process we have that |Nt| is a random variable.

4Gilbert in fact showed a better lower bound, 1.75 . . . in his 1961 paper [2]. It is worthwhile noting that
the proof does not depend on percolation on the hexagonal lattice like the previous proofs.
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As you can picture if you do the process by hand, the area the neighbors can occupy is not

big, in fact we can put a trivial upper bound, to calculate it we can picture two points r units

apart and consider the area of the circle of radius r minus the area of the overlap.

Figure 3: The area in black, which we’ll call b, is the biggest |Nt| could be.

Let’s calculate this area. Name the points A and B as in Figure 3. Now, the two circles

intersect in points C and D. Let’s consider the upper half of the overlap (the red area).

We can calculate it by noting that it is two times a sixth of the circle minus the equilateral

triangle5, therefore the area of the overlap is
(

2
3
π −

√
3
2

)
r2. Since the area of the circle is πr2,

we have that the area we’re looking for is
(
π
3

+
√
3
2

)
r2 = b.

To bound |C0|, let Z0, Z1, . . . be independent Poisson random variables with E(Z0) = πr2

and E(Zi) = b for i ≥ 1. Then,

P(|C0| ≥ k) = P(|Dk| = k) ≤ P

(
k−2∑
i=0

|Ni| ≥ k − 1

)
≤ P

(
k−2∑
i=0

Zi ≥ k − 1

)
.

If b < 1, then P(|C0| ≥ k)→ 0 as k →∞, hence it doesn’t percolate.

b < 1 implies r2 <
1

π
3

+
√
3
2

=
6

2π + 3
√

3
hence a = πr2 <

6π

2π + 3
√

3
,

giving us the desired lower bound for the critical area.

Using a multi-branching process, Hall [5] was able to get a better lower bound, namely 2.184.

5If you pick the slice of the left circle cut by AC and AB and you sum the slice of the right circle cut by BC
and BA you’ll get the overlap plus the equilateral triangle,which is why you need to substract it afterwards.

A slice of the circle is a sixth of the area of the circle, hence πr2

6 . The equilateral triangle has area
√
3
4 r2
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6 Further Work

Many people have worked on simulations to get numerical estimates for the critical area.

Quintanilla, Torquato and Ziff [3] give a lower bound of 4.51218 and an upper bound of

4.51228, putting the radius of the lilypad between .599223 and .599229, so about .6.

Using Monte Carlo methods, Balister, Bollobás and Walters [4] show that, with confidence

99.99%, the critical degree is between 4.508 and 4.515.

Several results for percolation on lattices have analogues for continuum percolation (Gilbert

percolation, lilypad). I will end the paper with one result of this kind due to Roy [6] giving

us an analogue of pH = pT for lilypad percolation. The theorem is the following:

Theorem 6.1. Let πr2λ = a < ac, let |C0(Gr,λ)| denote the number of points in the component

of the origin in Gr,λ. Then

P(|C0(Gr,λ)| ≥ n) ≤ exp(−can),

where ca > 0 does not depend on n. In particular, aT = ac, where

aT = inf{πr2λ : E(|C0(Gr,λ)|) =∞}.
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