The Aizenman-Kesten-Newman Theorem

Natasha Komarov *

March 6, 2010

Abstract

The uniqueness of the infinite open cluster in the setting of bond percolation on the square grid was proven by Harris in 1960 [6]. As shown by Fisher in 1961 [4], Harris' proof can be extended to include site percolation on the square grid. Aizenman, Kesten, and Newman [1] show that this fact is true in a much more general setting, as well.

Let Λ be a connected, infinite, locally-finite, vertex-transitive graph, and take $\Omega = \{0, 1\}^{V(\Lambda)}$ to be the probability space. The Aizenman-Kesten-Newman theorem states that under these conditions, there can be at most one infinite open cluster. We will discuss the proof of this result discovered by Burton and Kean [2].

1 Introduction

The Aizenman-Kesten-Newman theorem, particularly when combined with Menshikov's theorem, is an exceptional tool for simplifying a great variety of proofs. For instance, it allows for a simpler proof of the Harris-Kesten theorem, i.e. $p_H = p_T = 1/2$. [3]. It can also be used to prove that for any planar lattice Λ (satisfying some symmetry conditions), $p_c^b(\Lambda) + p_c^b(\Lambda^*) = 1$, where Λ^* is Λ 's dual lattice. There are many more such examples (see chapter 5 of Bollobás and Riordan [3]), but to see one example of how this theorem may be applied, let us consider the proof of the fact that for the triangular lattice T, $p_c^s(T) = 1/2$.

Suppose for contradiction that $p_c^s(T) < 1/2$ and consider a lattice with percolation probability p = 1/2. Let H_n be the origin-centered hexagon with n sites on each of the six sides, and number the sides of H_n cyclically. Define the event L_i to be "an infinite open path leaves from side i." Similarly, let $L_i^* =$ "an infinite closed path leaves from side i," and let $E = L_1 \cap L_2^* \cap L_4 \cap L_5^*$. By Harris' lemma [6], $\mathbb{P}(E) > 0$, and since E is independent of the

^{*}Dartmouth College, Hanover NH.

event H_{n-1} (since the infinite paths only meet H_n at its boundary), we have that $\mathbb{P}(E$ occurs and H_{n-1} has all closed sites) > 0. Let P_1, P_2^*, P_4 , and P_5^* be the corresponding paths, as in Figure 1.

Figure 1: H_n with the paths P_1, P_4, P_2^* , and P_5^* . [3]

Then P_1 and P_4 are disconnected infinite paths, contradicting the Aizenman-Kesten-Newman theorem. Thus $p_c^s(T) = p_H^s(T) = p_T^s(T) = 1/2$.

Define I_k to be the event that there are exactly k infinite open clusters (note that, a priori, k may be infinite). To prove the uniqueness of the infinite cluster, we will need to use the result that for all k, $\mathbb{P}(I_k) \in \{0, 1\}$. Then we shall go through the proof that $\mathbb{P}(I_k) = 0$ for all $k \ge 2$, giving us our desired result.

2 Preliminary results

As mentioned, we need to use the result that $\mathbb{P}(I_k) \in \{0,1\}$ for all k. This is true for all *automorphism invariant* events – that is, all events that are mapped into themselves by any automorphism induced by an automorphism of Λ [3]. To see that I_k is automorphism invariant, note that for any automorphism $\phi : \Lambda \to \Lambda$, two vertices x and y in Λ are adjacent if and only if $\phi(x)$ and $\phi(y)$ are adjacent in $\phi(\Lambda)$. This will give us the following result of Newman and Schulman [7].

Lemma 2.1. For all $k \in [2, \infty)$, $\mathbb{P}(I_k) = 0$.

Proof. Fix some vertex $x_0 \in V(\Lambda)$ and let $k \in \mathbb{N}$. Suppose that $\mathbb{P}(I_k) > 0$ (and therefore that I_k holds). Define $T_{n,k}$ to be the event that I_k holds and each infinite cluster contains a site in $B_n(x_0)$, the ball of radius n around x_0 . Since these balls cover Λ , we have that for large enough n, changing each closed site in $B_n(x_0)$ to open will connect the k infinite clusters that meet $B_n(x_0)$. Therefore, $\mathbb{P}(I_1) > 0$. But then we have that $\mathbb{P}(I_k) = \mathbb{P}(I_1) = 1$, which tells us that k = 1.

Before we continue to Burton and Keane's theorem, we will need the following technical lemma about graphs [3].

Lemma 2.2. Let G be a connected finite graph. Let $L = \{l_1, \ldots, l_t\}, C = \{c_1, \ldots, c_s\} \subseteq V(G)$ be disjoint, and suppose that deleting c_i disconnects G into components, at least 3 of which contain vertices of L. Then $t \ge 2 + s$.

Proof. Note that the "worst case" is when G has the minimal amount of edges necessary to make it connected and to have $L, C \subseteq V(G)$. Hence, the case to consider is when G is a tree whose leaves are contained in L. Then for all $i, d(c_i) \geq 3$. But we know that a tree has $2 + \sum_{v \in I(V)} (d(v) - 2)$ leaves, where I(V) is the set of internal vertices, so

$$|L| \ge (\text{number of leaves}) \ge 2 + \sum_{i=1}^{s} (3-2) = 2 + s.$$

Note also that this result can be extended to disconnected graphs by considering one component at a time.

3 The uniqueness of the infinite open cluster

Define a graph Λ to be *amenable* if, for all $x \in V(\Lambda)$,

$$\lim_{n \to \infty} \frac{|S_n(x)|}{|B_n(x)|} = 0.$$

Now we are ready to tackle Burton and Keane's proof of the fact that there can be at most one infinite cluster.

Theorem 3.1. For any infinite, connected, locally finite, amenable, vertex-transitive graph Λ , $\mathbb{P}(I_k) = 0$ for all $k \geq 3$. Proof. Suppose, for contradiction, that $\mathbb{P}(I_k) > 0$ for some $k \geq 3$. As before, fix a vertex $x_0 \in V(\Lambda)$. Fix r such that $B_r(x_0)$ has a positive probability of containing sites from at least 3 infinite clusters. For $x \in V(\Lambda)$, let $T_r(x) =$ "all sites in $B_r(x)$ are open and there exists an infinite cluster C such that when all sites in $B_r(x)$ are changed to closed, C is disconnected into at least 3 infinite clusters." Note that, by transitivity, for all $x \in V(\Lambda)$, $\mathbb{P}(T_r(x)) = a > 0$.

Let $W \subseteq B_{n-r}(x_0)$ be maximal subject to the constraint that the balls $B_{2r}(w)$ are disjoint for all $w \in W$. By the maximality of W, for any $z \in B_{n-r}(x_0) \setminus W$, $d(z, w) \leq 4r$ for some $w \in W$. Note that the balls $\{B_{4r}(w) \mid w \in W\}$ cover $B_{n-r}(x_0)$. Therefore

$$|W| \ge \frac{B_{n-r}(x_0)}{B_{4r}(x_0)}.$$

Using the fact that we can find a positive constant c such that $|W| \ge c|B_{n+1}(x_0)|$ for all $n \ge r$, and that Λ is amenable, we have $|W| \ge \frac{1}{a}|S_{n+1}(x_0)|$ for sufficiently large n. Let us fix such an n.

Define $B_r(w)$ to be a *cut-ball* if $w \in W \subseteq B_{n-r}(x_0)$ and $T_r(w)$ holds, i.e. $B_r(w) \subseteq B_n(x_0)$ and every site in $B_r(w)$ is open. Let s be the number of cut-balls. Then

$$\mathbb{E}(s) = \sum_{w \in W} \mathbb{P}(T_r(w)) = a|W| \ge |S_{n+1}(x_0)|.$$

Therefore, $\mathbb{P}(s \ge |S_{n+1}(x_0)|) > 0$. For the remainder of this proof, consider a configuration ω under which $s \ge |S_{n+1}(x_0)|$.

Let K be the union of all infinite clusters that meet $B_n(x_0)$. Change all of the sites in cut-balls to closed. Then K is disconnected into infinite clusters L_1, \ldots, L_t and finite clusters F_1, \ldots, F_u . Note $t \leq |S_{n+1}(x_0)|$ since each infinite cluster contains a site in the sphere $S_{n+1}(x_0)$. Let C_1, \ldots, C_s be the cut-balls.

Now recall Lemma 2.2, where the graph G is defined by contracting each C_i, F_i , and L_i to a single vertex c_i, f_i , and l_i , respectively (as in Figure 2). The infinite components of K correspond to components of G containing at least one vertex in $L = \{l_1, \ldots, l_t\}$. Note that since C_i is a cut-ball, deleting c_i from G disconnects a component into at least 3 components containing vertices of L. Applying Lemma 2.2 then says that

$$|S_{n+1}(x_0)| \ge t \ge s + 2 \ge |S_{n+1}(x_0)| + 2,$$

which is a contradiction.

Figure 2: Constructing the graph G from K. [3]

4 A possible direction for future work

One easy verification of the Aizenman-Kesten-Newman theorem for the special case of bond percolation in \mathbb{Z}^2 can be constructed as follows.

Suppose, for contradiction, that there are at least two infinite open clusters, C_1 and C_2 . Choose $r \in \mathbb{N}$ such that $B_r(0)$, the square of radius r centered at (0,0), is the smallest (origincentered) square that meets both C_1 and C_2 . Now consider an annulus surrounding $B_r(0)$. By Harris' lemma [6], each of the four rectangles comprising the annulus is crossed length-wise by an open path with some probability $\varepsilon > 0$ as in Figure 3.

Figure 3: An annulus with open path P. [3]

If such a path P exists in each of the four rectangles, then C_1 and C_2 must be connected by an open path. Iteratively taking (proportional) annuli around the resulting square, we have (with probability 1) some annulus with a path connecting the two clusters.

Clearly this construction does not immediately generalize. However, perhaps one can find an extension of this proof to (for example) a three-dimensional hypercubic lattice, where the clusters would become surfaces.

References

- M. Aizenman, H. Kesten, and C. M. Newman (1987), Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation, *Comm. Math. Phys.* 111, 505-531.
- R. M. Burton and M. Kean (1989), Density and uniqueness in percolation, Comm. Math. Phys. 121, 501-505.
- [3] B. Bollobás and O. Riordan (2006), *Percolation*, Cambridge U. Press, Cambridge UK.
- [4] M. E. Fisher (1961), Critical probabilities for cluster size and percolation problems, J. Mathematical Phys. 2 620–627.
- [5] G. Grimmett (1999), *Percolation*, Springer.
- [6] T. E. Harris (1960), A lower bound for the critical probability in a certain percolation process, Proc. Cambridge Philos. Soc. 56 13–20.
- [7] C. M. Newman and L. S. Schulman (1981), Infinite clusters in percolation moderls. J. Statist. Phys. 26, 613-628.