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Abstract

The uniqueness of the infinite open cluster in the setting of bond percolation on the
square grid was proven by Harris in 1960 [6]. As shown by Fisher in 1961 [4], Harris’
proof can be extended to include site percolation on the square grid. Aizenman, Kesten,
and Newman [1] show that this fact is true in a much more general setting, as well.

Let Λ be a connected, infinite, locally-finite, vertex-transitive graph, and take Ω =
{0, 1}V (Λ) to be the probability space. The Aizenman-Kesten-Newman theorem states
that under these conditions, there can be at most one infinite open cluster. We will
discuss the proof of this result discovered by Burton and Kean [2].

1 Introduction

The Aizenman-Kesten-Newman theorem, particularly when combined with Menshikov’s theo-

rem, is an exceptional tool for simplifying a great variety of proofs. For instance, it allows for

a simpler proof of the Harris-Kesten theorem, i.e. pH = pT = 1/2. [3]. It can also be used to

prove that for any planar lattice Λ (satisfying some symmetry conditions), pb
c(Λ) +pb

c(Λ
∗) = 1,

where Λ∗ is Λ’s dual lattice. There are many more such examples (see chapter 5 of Bollobás

and Riordan [3]), but to see one example of how this theorem may be applied, let us consider

the proof of the fact that for the triangular lattice T , ps
c(T ) = 1/2.

Suppose for contradiction that ps
c(T ) < 1/2 and consider a lattice with percolation prob-

ability p = 1/2. Let Hn be the origin-centered hexagon with n sites on each of the six sides,

and number the sides of Hn cyclically. Define the event Li to be “an infinite open path

leaves from side i.” Similarly, let L∗i = “an infinite closed path leaves from side i,” and let

E = L1 ∩ L∗2 ∩ L4 ∩ L∗5. By Harris’ lemma [6], P(E) > 0, and since E is independent of the
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event Hn−1 (since the infinite paths only meet Hn at its boundary), we have that P(E occurs

and Hn−1 has all closed sites) > 0. Let P1, P
∗
2 , P4, and P ∗5 be the corresponding paths, as in

Figure 1.

Figure 1: Hn with the paths P1, P4, P ∗2 , and P ∗5 . [3]

Then P1 and P4 are disconnected infinite paths, contradicting the Aizenman-Kesten-

Newman theorem. Thus ps
c(T ) = ps

H(T ) = ps
T (T ) = 1/2.

Define Ik to be the event that there are exactly k infinite open clusters (note that, a priori,

k may be infinite). To prove the uniqueness of the infinite cluster, we will need to use the

result that for all k, P(Ik) ∈ {0, 1}. Then we shall go through the proof that P(Ik) = 0 for all

k ≥ 2, giving us our desired result.

2 Preliminary results

As mentioned, we need to use the result that P(Ik) ∈ {0, 1} for all k. This is true for all

automorphism invariant events – that is, all events that are mapped into themselves by any

automorphism induced by an automorphism of Λ [3]. To see that Ik is automorphism invariant,

note that for any automorphism φ : Λ→ Λ, two vertices x and y in Λ are adjacent if and only

if φ(x) and φ(y) are adjacent in φ(Λ). This will give us the following result of Newman and

Schulman [7].

Lemma 2.1. For all k ∈ [2,∞), P(Ik) = 0.
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Proof. Fix some vertex x0 ∈ V (Λ) and let k ∈ N. Suppose that P(Ik) > 0 (and therefore that

Ik holds). Define Tn,k to be the event that Ik holds and each infinite cluster contains a site

in Bn(x0), the ball of radius n around x0. Since these balls cover Λ, we have that for large

enough n, changing each closed site in Bn(x0) to open will connect the k infinite clusters that

meet Bn(x0). Therefore, P(I1) > 0. But then we have that P(Ik) = P(I1) = 1, which tells us

that k = 1.

Before we continue to Burton and Keane’s theorem, we will need the following technical

lemma about graphs [3].

Lemma 2.2. Let G be a connected finite graph. Let L = {l1, . . . , lt}, C = {c1, . . . , cs} ⊆ V (G)

be disjoint, and suppose that deleting ci disconnects G into components, at least 3 of which

contain vertices of L. Then t ≥ 2 + s.

Proof. Note that the “worst case” is when G has the minimal amount of edges necessary to

make it connected and to have L,C ⊆ V (G). Hence, the case to consider is when G is a

tree whose leaves are contained in L. Then for all i, d(ci) ≥ 3. But we know that a tree has

2 +
∑

v∈I(V )(d(v)− 2) leaves, where I(V ) is the set of internal vertices, so

|L| ≥ (number of leaves) ≥ 2 +
∑s

i=1(3− 2) = 2 + s.

Note also that this result can be extended to disconnected graphs by considering one

component at a time.

3 The uniqueness of the infinite open cluster

Define a graph Λ to be amenable if, for all x ∈ V (Λ),

lim
n→∞

|Sn(x)|
|Bn(x)|

= 0.

Now we are ready to tackle Burton and Keane’s proof of the fact that there can be at most

one infinite cluster.

Theorem 3.1. For any infinite, connected, locally finite, amenable, vertex-transitive graph Λ,

P(Ik) = 0 for all k ≥ 3.
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Proof. Suppose, for contradiction, that P(Ik) > 0 for some k ≥ 3. As before, fix a vertex

x0 ∈ V (Λ). Fix r such that Br(x0) has a positive probability of containing sites from at least

3 infinite clusters. For x ∈ V (Λ), let Tr(x) = “all sites in Br(x) are open and there exists an

infinite cluster C such that when all sites in Br(x) are changed to closed, C is disconnected

into at least 3 infinite clusters.” Note that, by transitivity, for all x ∈ V (Λ), P(Tr(x)) = a > 0.

Let W ⊆ Bn−r(x0) be maximal subject to the constraint that the balls B2r(w) are disjoint

for all w ∈ W . By the maximality of W , for any z ∈ Bn−r(x0)\W , d(z, w) ≤ 4r for some

w ∈ W . Note that the balls {B4r(w) | w ∈ W} cover Bn−r(x0). Therefore

|W | ≥ Bn−r(x0)

B4r(x0)
.

Using the fact that we can find a positive constant c such that |W | ≥ c|Bn+1(x0)| for all

n ≥ r, and that Λ is amenable, we have |W | ≥ 1
a
|Sn+1(x0)| for sufficiently large n. Let us fix

such an n.

Define Br(w) to be a cut-ball if w ∈ W ⊆ Bn−r(x0) and Tr(w) holds, i.e. Br(w) ⊆ Bn(x0)

and every site in Br(w) is open. Let s be the number of cut-balls. Then

E(s) =
∑
w∈W

P(Tr(w)) = a|W | ≥ |Sn+1(x0)|.

Therefore, P(s ≥ |Sn+1(x0)|) > 0. For the remainder of this proof, consider a configuration ω

under which s ≥ |Sn+1(x0)|.

Let K be the union of all infinite clusters that meet Bn(x0). Change all of the sites in

cut-balls to closed. Then K is disconnected into infinite clusters L1, . . . , Lt and finite clusters

F1, . . . , Fu. Note t ≤ |Sn+1(x0)| since each infinite cluster contains a site in the sphere Sn+1(x0).

Let C1, . . . , Cs be the cut-balls.

Now recall Lemma 2.2, where the graph G is defined by contracting each Ci, Fi, and Li

to a single vertex ci, fi, and li, respectively (as in Figure 2). The infinite components of K

correspond to components of G containing at least one vertex in L = {l1, . . . , lt}. Note that

since Ci is a cut-ball, deleting ci from G disconnects a component into at least 3 components

containing vertices of L. Applying Lemma 2.2 then says that

|Sn+1(x0)| ≥ t ≥ s+ 2 ≥ |Sn+1(x0)|+ 2,

which is a contradiction.
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Figure 2: Constructing the graph G from K. [3]

4 A possible direction for future work

One easy verification of the Aizenman-Kesten-Newman theorem for the special case of bond

percolation in Z2 can be constructed as follows.

Suppose, for contradiction, that there are at least two infinite open clusters, C1 and C2.

Choose r ∈ N such that Br(0), the square of radius r centered at (0, 0), is the smallest (origin-

centered) square that meets both C1 and C2. Now consider an annulus surrounding Br(0). By

Harris’ lemma [6], each of the four rectangles comprising the annulus is crossed length-wise by

an open path with some probability ε > 0 as in Figure 3.

Figure 3: An annulus with open path P . [3]

If such a path P exists in each of the four rectangles, then C1 and C2 must be connected by

an open path. Iteratively taking (proportional) annuli around the resulting square, we have

(with probability 1) some annulus with a path connecting the two clusters.

Clearly this construction does not immediately generalize. However, perhaps one can find

an extension of this proof to (for example) a three-dimensional hypercubic lattice, where the

clusters would become surfaces.
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