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Abstract

Two events in a product space A,B ⊂ Ω = Ω1 × . . .Ωn are said to occur disjointly if
we can observe them occurring on disjoint sets of indices J,K ⊂ [n]. We denote the space
of configurations in which A and B occur disjointly by A□B. Reimer’s theorem states
that as long as all the sets Ωi are finite, we have the inequality ℙ(A□B) ≤ ℙ(A)ℙ(B).

We explain Reimer’s proof of the theorem [4], and mention some alterations intro-
duced in Borgs, Chayes, and Randall’s proof [3].

1 Introduction

Suppose that there are two friends, Yorick and Ren, each of whom wants to get a date to the

dance on Friday. They each have a list of people with whom they are willing to go with. Then if

we denote by ℙ(Y ) the odds that one of Yorick’s date-candidates is available for the night, and

ℙ(R) the probability that one of Ren’s date-candidates is available for the night, then the box

product ℙ(R□Y )denotes the odds that both of them will be able to find different dates, and

so both of them will be able to attend. Reimer’s theorem tells us that ℙ(R□Y ) ≤ ℙ(R)ℙ(Y ).

2 Preliminaries

Let Ωi be a finite set for each i ∈ [n]. If ! ∈ Ω =
∏n

i=1 Ωi, and if K ⊂ [n], we define the

K-cylinder about !, C(K,!), to be the set of all !′ ∈ Ω which satisfy !′i = !i for all i ∈ K.

If A,B ⊂ Ω, and ! ∈ A ∩ B, we say that ! ∈ A□B if we can produce disjoint index sets,

K, J ⊂ [n], such that C(K,!) ⊂ A and C(J, !) ⊂ B. This captures the notion of disjoint

occurrence: we know that A occurs on the indices in K and B occurs on the indices in J , and

the two are not allowed to help one another.
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The Van den Berg-Kesten inequality (BK) states that with the above hypotheses (i.e.

finiteness of the Ωi), we have

ℙ(A□B) ≤ ℙ(A)ℙ(B).

3 The van den Berg-Fiebig Theorem

Reimer’s theorem is a statement which applies to all finite probability spaces–the distribution

functions are irrelevant. Yet the proof of Reimer’s theorem is concentrated in some very clever

discrete counting arguments, which would seem to only apply to finite or at least discrete

measure spaces. The van den Berg-Fiebig theorem tells us that it is enough to prove the BK

inequality for some of the simplest nontrivial product spaces: Ω = {0, 1}n endowed with the

uniform probability. We follow the proof given in [1].

Proposition 3.1. The BK conjecture holds for all product spaces
∏n

i=1 Ωi if and only if it

holds in the case where each Ωi is {0, 1} with the uniform measure.

We sketch a proof of this statement. Let Ωi = {!i1, !i2, . . . , !imi
} and let � = �1× . . .×�n

be the product measure on Ω.

The main idea of the van den Berg-Fiebig theorem is to approximate the probability

measures �i with sequences of probability measures (�n
i )n≥1 such that

kij := 2n�i(!ij) ∈ ℕ ∪ {0}

for all i ∈ [n] and all j ∈ [mi]. Now the sequence (�n)n≥1 = (
∏
�n
i )n≥1 is composed of

probability measures on Ω, and as the sets Ωi are all finite, so that 2Ω is finite, and as the

dyadic rationals {2j+1
2k

: j, k ∈ ℤ} are dense in ℝ, we can pick the sequence �n so that

�n(A)→ �(A) for all A ⊂ Ω (this is called weak convergence of measure).

The proof that, once we have such a sequence of measures, we have proved BK for arbitrary

measures on Ω is somewhat tricky and technical, requiring us to essentially mirror the sequence

onto a collection of uniform spaces.

4 Butterflies

The discrete hypercube of dimension n is simply the set Qn = {0, 1}n. If x, y ∈ Qn, then the

hypercube spanned by x and y is the set [x, y] = {z ∈ Qn : zi ∈ {xi, yi}∀i ∈ [n]}. For z ∈ Qn,
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we define zc by zci := 1− zi. Note that Qn = [x, y] if and only if x = yc.

The main construction which Reimer uses to prove BK is the idea of a butterfly.

Definition 1. Given an ordered pair (a, b) ∈ (Qn)2, the butterfly on (a, b) is given by the four

subcubes

Red(Ba,b) := [a, b],Yellow(Ba,b) := [a, bc]

Body(Ba,b) := {a},Tip(Ba,b) = {b}.

The central theorem of Reimer’s paper:

Theorem 4.1. For any flock of butterflies ℬ with distinct bodies,

∣ℬ∣ ≤ ∣Red(ℬ) ∩ Yellowc(ℬ)∣.

This is the form from which Reimer derives the BK inequality.

As Reimer notes, this inequality is equivalent to saying that the number of Red-Yellow

antipodal pairs (i.e. (r, y) ∈ Red(ℬ) × Yellow(ℬ) satisfying [r, y] = Qn) is at least the size of

the flock. If ℬ is a flock, then so is ℬ′ := {Bb,a : Ba,b ∈ ℬ}, and it is not too difficult to see that

Red(ℬ′) = Red(ℬ) and Yellow(ℬ′) = Yellowc(ℬ). Thus we can prove the Butterfly theorem

by proving the form ℬ ≤ ∣Red(ℬ) ∩Yellow(ℬ)∣ for any flock ℬ of butterflies with distinct tips

(the passage from ℬ to ℬ′ turns bodies into tips).

5 Proof of the Butterfly Theorem

Reimer proves the alternate form of Theorem 4.1. through a clever linear-algebraic argument.

Given the flock ℬ of butterflies with distinct tips, let Y := {x ∈ Qn : x /∈ Yellow(ℬ)} and

R := {x ∈ Qn : x /∈ Red(ℬ) ∪ Y }. Then we have the disjoint union

Qn = (Red(ℬ) ∩ Yellow(ℬ)) ∪ Y ∪R.

Thus 2n = ∣Red(ℬ) ∩ Yellow(ℬ)∣ + ∣Y ∣ + ∣R∣. Reimer produces an mapping  from the

(necessarily disjoint) union ℬ ∪ Y ∪R→ ℝ2n with the property that the image set is linearly

independent. As the dimension of ℝ2n is 2n, this implies that the domain of  has size at most

2n. But then the previous decomposition gives us that ∣ℬ∣ ≤ ∣Red(ℬ) ∩ Yellow(ℬ)∣.
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Constructing the map is somewhat tricky. We send an element x of R to the tensor product

⊗n
i=1exi

, where e0 = (1, 1) and e1 = (0, 1). Similar rules are provided for determining the image

of x ∈ Y ∪ ℬ.

In order to show that the image set is linearly independent, Reimer proves the following

six statements:

1.  (R) ⊥  (Y )

2.  (R) ⊥  (ℬ)

3.  (Y ) ⊥  (ℬ)

4.  (R) is independent

5.  (Y ) is independent

6.  (ℬ) is independent

The difficulty in proving parts 1-5 is mitigated by Reimer’s clever construction. To prove

part 6, we note that the tips of the butterflies in ℬ are all distinct, so that for each y ∈ Qn

there is at most one Bx,y ∈ ℬ and so at most one gx,y =  (Bx,y) to consider. Thus we restrict

ourselves to a set of vectors {gx(y),y}y∈Qn for some arbitrary selection x : Qn → Qn. We

carry out the computations over ℤ2, i.e. we send −1 to 1. This should be more difficult,

in principle, than proving independence over ℝ, so if we prove independence over ℤ2 we are

finished. If we make a matrix with the vectors gx(y),y as columns (so a 2n × 2n matrix), after

a little manipulation we see that it has a unique column of each possible length. Thus with

rearrangement it is an upper-triangular matrix with 1s on the diagonal, hence invertible. Thus

the set {gx(y),y}y∈Qn is linearly independent.

This proves the Butterfly Theorem

6 The BK Inequality

Reimer proves the BK inequality using the Butterfly Theorem by means of the Van den Berg-

Fiebig theorem.

Theorem 6.1. Let R and Y be subsets of {0, 1}n; then ∣R∣∣Y ∣ ≥ ∣R□Y ∣2n.
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Reimer proves this inequality by taking the flock of butterflies Ba,b ∈ ℬ and dicing it up

according to which subcubes Q ⊂ Qn the body Body(Ba,b) lies in.

Specifically, he shows that we only need to prove that ∣Red(ℬ)∣∣Yellow(ℬ)∣ ≥ 2n∣Body(ℬ)∣

, then proves this inequality.

7 Modifications

Borg, Chayes, and Randall change Reimer’s proof in many details. They omit all mention of

Butterflies or of a Butterfly theorem. They also define the map  in a more elegant fashion,

sidestepping the somewhat unpleasant piecewise definition which Reimer gives to the reader.

Their matrix manipulations to show that the image of  is a linearly independent set are more

carefully spelled out but also more complicated.
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