
A Stronger Form of the Van den Berg-Kesten Inequality

Peter Winkler ∗

March 4, 2010

Abstract

Let Qn := {0, 1}n be the discrete hypercube with uniform probability distribution,
and let A and B be two “up-events”—that is, subsets of Qn which are closed under the
operation of changing any coordinate of an element from 0 to 1. Let B′ be the down-
event (necessarily of the same probability as B) consisting of all {0, 1}-complements of
elements of B.

The Van den Berg-Kesten inequality says that the probability that A and B occur
disjointly is no greater than the product of their probabilities; symbolically, P(A�B) ≤
P(A)P(B). Harris’ inequality says that P(A ∩ B′) ≤ P(A)P(B′); which inequality is the
stronger?

We show that P(A�B) ≤ P(A∩B′), characterizing the cases in which the inequality
is strict. An example is given that arises naturally in Smirnov’s proof of conformal
invariance for critical site percolation on the triangular grid.

1 Introduction

The Van den Berg-Kesten inequality [4] and Harris’ inequality [7] are fundamental facts about

probability in a product space, both of which played important roles in the development of

percolation [2, 6]. Each has been vastly generalized in more recent years: the former to the

FKG inequality [5] and then the “four-function theorem” of Alswede and Daykin [1]; the latter,

to a theorem of Van den Berg and Fiebig [3] and then, spectacularly, to Reimer’s theorem [8].

At first glance, the two basic inequalities appear similar but not really comparable. When

applied to a pair of up-events A and B, they run in opposite directions: Harris’ says that they

are non-negatively correlated, that is, that P(A∩B) ≥ P(A)P(B), while Van den Berg-Kesten

says that when occurrences must be “disjoint” (see below for definition), we get P(A�B) ≤

P(A)P(B).
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Applied to an up-event A and a down-event D, the inequalities are equivalent: A∩D and

A�D are identical, since A and D can only occur disjointly, and for opposing events—one up,

one down—Harris’ inequality reverses direction.

To set up Van den Berg-Kesten and Harris for a bake-off, we consider the uniform bi-

nary setting, that is, the probability space Qn := {0, 1}n with uniform distribution. This is

an important special case in percolation theory, because the critical probabilities for bond

percolation on the square grid and for site percolation on the triangular grid are both equal

to 1

2
; moreover, it was known [3] long before Reimer came along that the general Van den

Berg-Kesten conjecture could be reduced to the uniform binary case. The key consequence

of our assumption is that if we denote the pointwise complement of an event B by B′, then

P(B′) = P(B).

Now, if we let A and B be up-events in the uniform hypercube Qn, we have that P(A�B) ≤

P(A)P(B) by Van den Berg-Kesten while P(A∩B′) ≤ P(A)P(B) by Harris. So how do P(A�B)

and P(A ∩ B′) compare? In this setting, it seems, Van den Berg-Kesten is fundamentally

stronger than Harris.

Putting it another way, in A�B the constituent events are not permitted to help each

another; in A∩B′, they can’t help each other. Lack of permission appears to beat incapability

as a cause of reduction in probability.

2 Preliminaries

If C ⊂ Qn and I ⊂ {1, . . . , n}, we say that I witnesses x ∈ C if for any y ∈ Qn, if yi = xi for

every i ∈ I, then y ∈ C. When x is chosen randomly from Qn, we say that A and B occur

disjointly if there are disjoint sets of indices I, J such that I witnesses x ∈ A and J witnesses

x ∈ B. The set of all x with this property is denoted A�B.

For x, y ∈ Qn put x ≤ y if xi ≤ yi for all i = 1, . . . , n. The subset A ⊂ Qn is called an

“up-event” if x ≤ y and x ∈ A implies that y ∈ A. Down-events are defined similarly. If A

is an up-event, then for any minimal I witnessing x ∈ A, we have xi = 1 for all i ∈ I; for x

in a down-event D, xi = 0 for i in any minimal witness. It follows that if A is an up-event

and D a down-event, then any occurrence of A∩D is a disjoint occurrence—because minimal

witnesses for each are forced to be disjoint.
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We denote the {0, 1}-complement of a point x by x′. If B is an up-event then B′ is the

down-event {x′|x ∈ B}. Since point-complementation is an involution and our probability

distribution is uniform, we have B′′ = B, |B′| = |B| and P(B′) = P(B).

The coordinate k is said to be pivotal for x ∈ A if x[k] /∈ A, where x[k]i = xi iff i 6= k.

A double pivot for A and B is an x for which there is a coordinate k that is pivotal relative

to A�B, and moreover, there are (at least) two disjoint pairs of witnesses—in one of which k

belongs to the witness for A, and in the other B.

We assume henceforth that A and B are arbitrary up-events in Qn. The Van den Berg-

Kesten inequality says that P(A�B) ≤ P(A)P(B), and Harris’ inequality assures us that

P(A ∩ B′) ≤ P(A)P(B′) = P(A)P(B). We wish to compare P(A�B) with P(A ∩ B′).

3 Result

Theorem 3.1. Let A and B be up-events in the uniform hypercube {0, 1}n, and let B′ be the

pointwise complement of B. Then P(A�B) ≤ P(A ∩ B′), with equality if and only if there is

no double pivot for A and B.

Proof. We prove the non-strict inequality by induction on n. For x ∈ Qn−1 and ε ∈ {0, 1},

denote by xε the member of Qn obtained from x by adding an nth coordinate xn = ε. For

any event E, let Eε ⊂ Qn−1 be given by Eε := {x|xε ∈ E}; thus |E| = |E0| + |E1|.

When E is an up-event, E0 may be thought of as the set of “short” strings that already

satisfy E, E1 those that will satisfy E if the last coordinate cooperates. In particular, E0 ⊂ E1.

Let A and B be as in the statement of the theorem; let C := A�B and D := A∩B′. Then

C0 = A0�B0,

C1 = (A0�B1) ∪ (A1�B0),

D0 = A0 ∩ B′

0
, and

D1 = A1 ∩ B′

1
,

where B′

ε
means (B′)ε.

3



Using our induction hypothesis and the fact that the pointwise complement of Bε is B′

1−ε
,

we have

|D| = |D0| + |D1| = |A0 ∩ B′

0
| + |A1 ∩ B′

1
| ≥ |A0�B1| + |A1�B0| .

But, since A0�B0 ⊂ (A0�B1) ∩ (A1�B0),

|C| = |C0| + |C1| = |A0�B0| + |(A0�B1) ∪ (A1�B0)|

≤ |A0�B0| + |A0�B1| + |A1�B0| − |A0�B0| = |A0�B1| + |A1�B0| ;

comparing the last two displays gives us the desired result.

To characterize the cases of equality, we note that the only case in the induction where

equality is not preserved is when |(A0�B1) ∩ (A1�B0)| > |A0�B0|, that is, when (A0�B1) ∩

(A1�B0)) contains an x /∈ A0�B0. Such an x, when padded with zeroes to give it a full n

coordinates, is a double pivot for A and B.

4 An example from percolation

In the proof of Smirnov’s theorem (see [9] or, for more detail, [2]) the boundary of a subgraph

of the hexagonal lattice is cut into three paths (with cells labeled 1,2 and 3 as in Fig. 1 below).

A vertex is chosen in the interior and its neighbor cells labeled x1, x2, x3. Each interior cell is

declared “open” independently with probability 1/2, and closed otherwise.

Let Gi be the event that there is an open path from xi to a boundary cell labeled i, and Fi

the same for a closed path. The combinatorial crux of Smirnov’s proof is that P(F1�F2�G3) =

P(G1�F2�G3). What about P(F1�F2�G3) versus P(F1�F2�F3)? If we let A = F1�F2 and

B = F3 then the conditions of Theorem 3.1 are satisfied, with “closed” corresponding to 1

and “open” to 0, and n = 20. Thus P(F1�F2�G3) ≤ P(F1�F2�F3). The domain pictured in

Fig. 1 is the simplest example we were able to construct in which equality does not hold.

The difference between the quantities P(F1�F2�G3) and P(F1�F2�F3) is pretty small. A

double pivot for F1�F2 and F3 amounts to a configuration in which a cell (which could only

be a or c) can be used either in a closed path from x3 to the 3-boundary—while a disjoint

witness remains to F1�F2—or the reverse, but when flipped to “open”, ruins F1�F2�F3.

There is exacly one such configuration, pictured below in Fig. 1. It follows that the differ-

ence between P(F1�F2�G3) and P(F1�F2�F3) is 2−20.
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Figure 1: Critical face percolation on a subgraph of the hexagonal grid.
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Figure 2: The configuration responsible for P(F1�F2�G3) > P(F1�F2�F3).
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