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Abstract

The Kolmogorov Zero-One law states that for tail events on infinite-dimensional prob-
ability spaces, the probability must be either zero or one. Behavior analogous in a natural
sense to this exists on finite-dimensional spaces as well. Events exhibiting this behavior
are said to have a sharp threshold.

Let Qn = {0, 1}n be the discrete hypercube with the probability measure Pp defined
by Pp(ω1, ω2, . . . , ωn) = pk(1−p)n−k where k = ω1 +ω2 + · · ·+ωn . An up event A ⊂ Qn
is symmetric if there exists a transitive permutation group on the indices under which A
is invariant. We present the following result, due to Friedgut and Kalai:

Theorem 0.1. For every symmetric up-event A ⊂ Qn, if Pp(A) > ε, then Pq(A) > 1− ε
for q = p+ c log(1/2ε)/ log n, where c is an absolute constant (it does not depend on any
of the other terms).

1 Introduction

When the theory of random graphs was first developed by Erdös and Rényi, they noticed that

many graph properties exhibited a peculiar property. Their first such encounter was shown

in [3], where they demonstrated that for the random graph G(n, p) (the graph of n vertices

where each is connected i.i.d. with probability p), if p < (1− ε) log n/n the graph will almost

surely contain an isolated vertex and if p > (1 + ε) log n/n, the entire graph will almost surely

be connected. Many other graph properties on random graphs were found to exhibit such

behavior, which we refer to as a sharp threshold.

In Figure 1, we see an example of a sharp threshold. Here, the thick lines 0 and 1 cor-

respond to the probability of a tail event with critical probability p. The dotted lines show

the continuous density function of the probability with respect to p for some given n. Here,

δ relies on p, n and ε. In general, we can send δ to zero as n goes off to infinity, regardless of

the values of ε and p.
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Figure 1.

Since these first observations, many people have further studied sharp thresholds. They

have been demonstrated for a multitude of events. Over the years, the bounds which determine

how sharp they are have also improved. In 1996, Friedgut and Kalai demonstrated that every

symmetric up-event has a sharp threshold [6] and provided optimal bounds up to a constant

factor. Although not the final word in the field, the repercussions of this result are strong.

Applications of sharp thresholds abound. For many problems relating to random graphs,

Boolean algebras and other fields, sharp thresholds serve a valuable purpose. If the problem

can be shown to be easy when a related event is almost always or almost never true, then we

can confine our attention to the narrow band around some particular value of p. Of course,

for our purposes the most important application of sharp thresholds relates to percolation.

They are at the center of one of the easier approaches to proving Kesten’s theorem, which

states that PH ≤ 1/2. A proof using the result stated below can be found in [2]. We now start

developing the tools necessary to prove the sharp threshold theorem of Friedgut and Kalai.

2 Preliminaries

Let A be an event in the hypercube Qn. For ω ∈ Qn, the ith variable ωi is pivotal if precisely

one of ω = (ω1, ω2, . . . , ωn) and ω = (ω1, ω2, . . . , 1−ωi, . . . , ωn) is in A. Note that whether the

ith coordinate is pivotal depends both on the point ω and the event A. The influence of the
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ith variable on A is

βi(A) = Pp({ω ∈ Qn : ωi is pivotal for A}).

The following lemma, first proved by Margulis in 1974 and rediscovered in 1981 by Russo,

states the derivative of Pp(A) with respect to the influence. Recall A ⊂ Qn is an up-event if

for ω = (ω1, . . . , ωn) ∈ A and αi ≥ ωi for all i ∈ [n], we have α = (α1, . . . , αn) ∈ A as well.

Lemma 2.1. Let A ⊂ Qn be an up-event. Then

d

dp
Pp(A) =

n∑
i=1

βi(A).

This result follows from the fact that as A is an up-event, we can show that for each index

Pp is a constant unless the index is pivotal, in which case it takes the value pβi(A). A proof

can be found in [2] p. 46-47.

The next result we need is due to Kahn, Kalai and Linial [7].

Theorem 2.2. Let A ⊂ Qn
p with Pp(A) = t. Then there exists an absolute constant c such

that

max
i
βi(A) ≥ ct(1− t) log n/n.

When applying Theorem 2.2, we will pull the larger of t and (1− t) inside of our constant

as it will be greater than or equal to 1/2. In this way, we only need to concern ourselves

with the smaller term. No proof shall be presented, as it relies on finite-dimensional Fourier

analysis. While the techniques used are definitional with the exception of Parseval’s identity

and several inequalities due to Beckner (cited in [7]), it is too involved to present here. A

strictly combinatorial proof, also too intricate to be shown here, was presented by Falik and

Samorodnitsky in 2005 [4].

We note that both of the above results can be extended. The proof of Lemma 2.1 allows

for each index to have its own value pi. The extension of Theorem 2.2 in 1992 by Bourgain,

Kahn, Kalai, Katznelson and Linial [1] is more substantive. Instead of being proved on Qn,

BKKKL states that above holds for an arbitrary n-dimensional probability space. A greatly

simplified proof was presented in 2004 by Friedgut [5].

Let A ⊂ Qn be an up-event. We say A is symmetric if there is a transitive permutation

group Γ on [n] such that A is invariant under Γ. In the case that the event A is symmetric,
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the influence of each index will be identical. We then denote the influence β(A). We are now

prepared to prove the sharp threshold theorem of Friedgut and Kalai for symmetric up-events.

3 Result

The following proof is as presented in [6].

Theorem 3.1. For every symmetric up-event A ⊂ Qn with 0 < ε < 1/2 and Pp(A) < ε, we

have Pq(A) > 1− ε for q ≥ p+ c log(1/(2ε))
logn

where c is an absolute constant.

Proof. Let A be a symmetric up-event. Then the influence of any two indices is the same,

with each index having influence β(A). Using Lemma 2.1 and Theorem 2.2 with c1 as in the

latter, we compute the following lower bound

d

dr
Pr(A) = nβ(A) ≥ nc1Pr(A)

log n

n
= c1Pr(A) log n.

Therefore,
d

dr
log Pr(A) =

d
dr

Pr(A)

Pr(A)
≥ c1Pr(A) log n

Pr(A)
= c1 log n. (1)

For p such that Pp(A) ≥ ε, define q′ = p+ log(1/(2ε))
c1 logn

. Then

log(Pq′(A)) ≥ log(Pp(A)) +

∫ q′

p

c1 log ndr ≥ log(ε) + log(1/(2ε)) = log(1/2).

We are now half of the way there. The rest of the way uses the same approach, with one slight

variation.

For 1/2 ≤ Pr(A) < 1− ε, our lower bound changes as follows:

d

dr
Pr(A) = nβ(A) ≥ nc1(1− Pr(A))

log n

n
= c1(1− Pr(A)) log n.

Then
d

dr
log(1− Pr(A)) =

d
dr

(1− Pr(A))

(1− Pr(A))
≤ −c1(1− Pr(A)) log n

(1− Pr(A))
= −c log n.

Note the direction of the inequality changes compared to Equation 1 as we are now taking the

derivative of −Pr(A). Then by defining q = q′ + log(1/(2ε))
c1 logn

, we see

log(1− Pq(A)) ≤ log(1− Pq′)(A))−
∫ q

q′
c1 log n dr ≤ log(1/2)− log(1/(2ε)) = log(ε).

Thus for c = 2c1 and q = p+ log(1/(2ε))
c logn

we have Pq(A) > 1− ε.
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The above result can be generalized in several ways. When p does not rely n, the above

bound is sharp except for improvements upon the constant c. If p decreases with n, then the

bound can be improved by using the value q = p+ cp log(1/p) log(1/(2ε))
logn

. It can also be adapted

to probabilities with a finite number of possible values, so long as all but one of these values

has appropriately small probability. Further generalizations can be found in [6].
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