
Renormalization: An Attack on Critical Exponents

Zebediah Engberg

March 15, 2010

1 Introduction

Suppose L ⊂ Rd is a lattice with critical probability pc. Percolation on L is significantly differs
depending on p < pc or p > pc. The following table details some of the striking differences between
the subcritical and supercritical percolation.

Quantity p < pc p > pc
Number of infinite clusters 0 1
Percolation probability θ(p) = 0 θ(p) > 0
Expected cluster size χ(p) <∞ χ(p) =∞
Tail of finite clusters Pp(n ≤ |C| <∞) ≈ e−an Pp(n ≤ |C| <∞) ≈ e−bn(d−1)/d

These results suggest the possibility of unexpected phenomena when p is very close to pc. Perhaps
these discrepancies will interact in an interesting manner when p is close to pc. In other words, if
f(p) is some quantity which exhibits differing behavior on whether p < pc or p > pc, we seek to
understand f(p) as p→ pc.

Despite the simplicity of the task at hand, mathematicians have made very little headway in
understanding the percolation process at or near pc. Although theoretical physicists have made
grandiose predictions and heuristic arguments (backed by much data), very few results are actually
mathematically rigorous. The two essential techniques used for understanding critical phenom-
ena, scaling theory and renormalization, were initially pioneered by applied scientists and their
mathematical underpinnings remain uncertain. These techniques give arguments which demon-
strate a number of the crowd-pleasing conjectures (we will get to these shortly), though they all
rely on an unproven underlying assumption. Regarding this, Grimmett [3] writes “The challenge
to mathematicians is therefore to make sense of scaling theory, rather than to verify a bunch of
conjectures.”

We now describe the various quantities which exhibit interesting behavior for p close to pc. In
what follows, we focus specifically on the lattice L = Zd for simplicity, however, everything can
easily be generalized to an arbitrary lattice in d-dimensions. The remarkable series of conjectures is
that all of the quantities we shall mention satisfy certain types of power growth near pc. They key
piece of information to take away from such a quantity will be its critical exponent (these will be
described in detail). Even more stunning is the belief that these critical exponents do not actually
depend on the underlying lattice. Physicists believe they should depend only on the dimension of
the ambient space. If true, then in some sense the critical exponents hold more power than the
critical probability pc, as there are many examples of lattices of the same dimension with distinct
critical probabilities.
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We know that the percolation probability, θ(p), is positive for p > pc. It is conjectured that
θ(p) exhibits a power-like behavior for p near pc. Specifically, it is believed that there exists β > 0
so that

θ(p) ≈ (p− pc)β as p ↓ pc.

Before continuing, we should explain what we mean by the symbol “≈”. The standard asymptotic
statement

θ(p− pc)−β → 1 as p ↓ pc
is actually too strong. We only wish to say that θ(p)(p−pc)−β is bounded away from 0 and infinity
as p ↓ pc. In other words, θ(p) behaves like constant times (p − pc)β close to pc. Another way of
expressing this conjecture is that

lim
p↓pc

log θ(p)
log(p− pc)

= β,

and henceforth this is what we shall mean by ≈. Note this conjecture actually implies percolation
does not occur at pc. This is known to be the case only when d = 2 and d ≥ 19, and the question
remains open for all other d.1

The expected cluster size is also conjectured to satisfy a power growth near pc. Specifically, it
is conjectured that there exists γ > 0 so that

χ(p) ≈ (pc − p)−γ as p ↑ pc.

In addition to θ(p) and χ(p), there are several other quantities which are conjectured to exhibit
power behavior near pc. Well known examples are the expected size of the finite cluster (which
equals χ(p) when p < pc) and the expected number of open clusters per vertex.

There are also several functions which are conjectured to satisfy power growth at p = pc.
Assuming θ(pc) = 0, we know that

∞ = χ(pc) =
∞∑
n=1

nPpc(|C| = n).

Therefore the quantity Ppc(|C| = n) cannot decay exponentially, for otherwise the above sum would
converge. This suggests Ppc(|C| = n) behaves like a negative power of n. It is conjectured that
there exists δ ≥ 1 so that

Ppc(|C| = n) ≈ n1−1/δ.

Likewise, the probability that there exists an open path from the origin to the surface of a box of
size n as well as the probability that a given cluster has radius n are both conjectured to decay like
a power of n at p = pc.

We give an important example of a quantity which depends on both n and p. Let En be the event
that “the origin and the point (n, 0, ..., 0) are in the same finite open cluster”. Let τp(n) = Pp(En).
It is conjectured that there exists some constant η and some function ξ(p) so that

τp(n) =

{
n2−d−η, if p = pc

e−n/ξ(p), if p 6= 0, 1, pc,

1Many near-critical percolation results are actually rigorous for large d. The idea is that when d is large enough,
percolation on the lattice in question is similar to percolation on a binary tree. This idea has been made rigorous for
d ≥ 19, although physicists believe the technique should work for d ≥ 7.

2



where ξ(p) satisfies ξ(p) → ∞ as p → pc. For us, ξ(p) is an important quantity known as the
correlation length. This conjecture agrees with the general belief that any reasonable percolation
quantity should behave like a power at or near the critical point. Consider τp(n) in the double limit
p → pc and n → ∞. For a fixed probability p, we know that τp(n) → 0 as n → ∞. On the other
hand, for fixed n, we actually know that τp(n) is monotonically increasing as p → pc. Thus, one
might expect interesting behavior in the double limit. This discussion is somewhat analogous to
the limit

lim
n→∞

(
1 +

1
n

)n
.

The base 1 + 1/n is a real number strictly greater than 1, so we might expect that this limit tends
to infinity since we are raising it to higher powers. Conversely, if we raise a number very close to
1 to the positive power n, then result remains close to one. This seems to suggest the limit is 1.
Instead, a compromise is reached and (1 + 1/n)n → e.

In our case, we might guess that

τp(n)
τpc(n)

≈ en/ξ(p) for p near pc and large n.

That is to say, τp(n) and τpc(n) differ significantly only when n/ξ(p) is large. So ξ(p) is the natural
length scale of bond percolation. The function ξ(p) is the minimal scale on which edge percolation
at p differs from edge percolation at pc. Again, it is conjectured that there exists a constant ν > 0
so that

ξ(p) ≈ |p− pc|ν as p→ pc.

These critical exponents β, γ, and ν seem unrelated. However, results from scaling theory
imply that these quantities actual satisfy linear and quadratic equations known as the scaling and
hyperscaling relations. Moreover, physicists conjecture β = 5/36, γ = 43/18, and ν = 4/3. In the
case when L is the triangular lattice in the plane, Smirnov’s theorem rigorously proves these results
[2, 4].

2 Renormalization

Renormalization is a general method used in a variety of settings by theoretical physicists and
applied mathematicians. Usually a renormalization procedure rests on several assumptions which
cannot be made rigorous. However, there are situations in which renormalization has solid foun-
dations. For example, through the guise of k-dependence, such techniques are rigorously used in
the proof of Kesten’s theorem [2]. We use renormalization as a method for understanding critical
exponents. In particular, renormalization demonstrates (though not rigorously) several of the scal-
ing relations among critical exponents. In addition, it allows one to approximate both the critical
exponents and the critical probability pc computationally.

We restrict ourselves to the lattice L = Z2, though everything that follows extends almost
verbatim for L = Zd, and without much additional trouble for arbitrary lattices. Our first task will
be to partition Z2 into blocks of size b, where b is some positive integer. Specifically, the blocks in
this partition will be sets of the form

B(x, y) =
{

(u, v) ∈ Z2
∣∣xb ≤ u < (x+ 1)b, yb ≤ v < (y + 1)b

}
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where (x, y) ∈ Z2. We give create a new lattice from these blocks, where each block is now a
vertex and two blocks are adjacent if there exists vertices in Z2 within each block that are adjacent
in Z2. We call this new lattice Rb the renormalization of Z2. We must now describe how the
percolation process on Z2 induces a percolation on Rb. We say that a block B(x0, y0) is traversable
in the horizontal direction if there exists an open path contained entirely with B(x0, y0) from some
vertex of the form (bx0, y) to some vertex of the form ((b + 1)x0 − 1, y′) with the edge between
((b+ 1)x0 − 1, y′) and ((b+ 1)x0, y

′) open. Put another way, there must exist an open path within
B(x0, y0) from some vertex on the left side of the block to some vertex on the right side of the
block, and an additional edge leading out to the right. A similar definition describes when a block is
traversable in the vertical direction. In the lattice Rb, we say that a horizontal (resp. vertical) edge
is open if the left-hand (resp. bottom) block of the two blocks incident to the edge is traversable
horizontally (resp. vertically).

We now have a percolation process on Rb in which each edge is open with probability Rb(p) :=
Pp(B(0, 0) is traversable in the horizontal direction). How does Rb(p) change with p? For small
enough b, it is not difficult to compute Rb(p) by hand. For example, when b = 2 we know that the
event that a block is traversable horizontally is only dependent on six edges in Z2. In the Figure 1,
R2(p) is the probability that there exists an open path from a vertex on the left side of the graph
to a vertex on the right side of the graph. Since there are only 26 = 64 possible configurations of
open and closed edges, we could make a list of all possible configurations and determine all cases
in which the block is horizontally traversable. However, we see that this soon becomes unwieldy as
b grows larger.

Figure 1: The edges on which the event “B(0, 0) is traversable horizontally” is dependent.

What can we say regarding Rb(p) for large b? If p is close to 0 and the block size b is large, we
expect Rb(p) to be much smaller than p, since we are requiring at least b open edges in a block of
size b2, and moreover, these open edges must be aligned in just the right way to guarantee an open
path across the block. Similarly, if p is close to 1, then by duality the same argument shows Rb(p)
should be larger than p. Thus we expect the graph of Rb(p) to be some sort of S-shape curve with
a unique nontrivial fixed point p̃. See Figure 2.

Note that in the original lattice Z2, bond percolation is independent (the event that one edge
is open is independent from the event that a second edge is open). This is no longer true in Rb.
For example, knowing that a block is traversable in the horizontal direction increases the likelihood
that it is also traversable vertically, since the former implies at least b open edges within the block.
Despite this, renormalization assumes two hypotheses regarding the renormalized lattice Rb:

1. Bond percolation on Rb closely mimics bond percolation on Z2 with edge probability Rb(p)
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Figure 2: This shows the expected S-shape curve related p with Rb(p). Note the unique nontrivial
fixed point p̃ and that R′b(p̃) > 1.

2. The large-scale connectivities of these two processes are similar

These are two fundamental assumptions of renormalization which, though plausable and intuitive,
remain unproven.

As previously discussed, ξ(p) is the minimal scale over which bond percolation at p can be
distinguished from bond percolation at pc. By our first hypothesis, we know that the correlation
length on the renormalized lattice Rb is ξ(Rb(p)). Because each unit of length in Rb is actually b
units of length in Z2, the second hypothesis implies the equation

ξ(p) = bξ(Rb(p)). (1)

Evaluating (1) at the fixed point p̃, we have ξ(p̃) = bξ(p̃). Because b is a finite number, it must be
the case that ξ(p̃) = 0,∞. Because it is not the case that ξ(p̃) = 0, we have ξ(p̃) = ∞. But pc is
the unique value of p for which ξ(p) =∞. Thus this fixed point p̃ is actually the critical probability
for the lattice Z2.

One could use the above heuristic as a recipe for estimating pc. Because the two renormalization
hypotheses are imprecise and should only be regarded an approximation of the truth, we cannot
expect that p̃ exactly equals pc. However, for larger and larger values of b, it is plausible that
p̃ approaches pc. The computational difficulty here is the aforementioned problem of computing
Rb(p) for large b.

3 Obtaining a critical exponent

Using equation (1) and that p̃ = pc as derived from the renormalization hypotheses, we can obtain
information regarding critical exponents. Again, our derivations here have somewhat of a “hand-
wavy” feel. This should not trouble the reader since our assumptions are already based on dubious
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hypotheses. Let λ = R′b(pc) > 1 as previously mentioned (see Figure 2). We linearize Rb(p) at
p = pc to obtain

p− pc ' λ(p− pc) as p→ pc. (2)

Let ψ(p− pc) = ξ(p) for simplicity. Substituting (2) in for (1), we have

ψ(p− pc) ' bψ(λ(p− pc)) as p→ pc. (3)

Thus equation (3) gives a recurrence for ψ and hence ξ. Iterating (3) m times, we have

ψ(p− pc) ' bmψ(λm(p− pc)) as p→ pc.

Now choose a positive constant A. Because λ > 1, there exists m so that γm|p − pc| ' A. After
several algebraic manipulations (see [3]), we find that ψ(p− pc) ≈ D|p− pc|ν where D is a constant
depending only on b, λ, and A, and

ν =
log b
log λ

. (4)

This last statement is the punchline we have sought. It shows that indeed ξ(p) satisfies power
growth near pc.

In analogy with our derivation that p̃ = pc, there are two possible directions in which to turn
given (4). Computation of the function Rb(p) allows one to estimate ν. More “theoretically”,
one may derive similar expressions for other critical exponents using the same renormalization
framework. It is these expressions that give rise to the scaling and hyperscaling relations.
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