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Everything in this paper comes from [1], [2], and [3]. Respectively, these are 74, 77, and 91 in Peter
Winkler’s publication list.

1 Exact Mixing

The goal of exact mixing is to achieve a target distribution, τ , exactly given a starting distribution σ.
We accomplish this through the use of a stopping rule, which is denoted here by Γ. A stopping rule
will tell us the probability that we stop at a given vertex depending on how the walk has progressed
so far, but independent of the future. Often, our target distribution τ is the stationary distribution
π and our starting distribution σ will be concentrated at one vertex j, in which case we write σ = j.
(Here, we really mean that σj = 1 and σi = 0 for all i 6= j.)

Example 1.1. Consider the simple example of the walk on the
graph G pictured to the right. This is the line on 3 vertices. Sup-
pose our starting distribution σ is concentrated at vertex 2 and our
target distribution is the stationary distribution

π =
[

1
4

1
2

1
4

]
.

Then we can follow the stopping rule Γ which tells us to stop where
we started (at 2) with probability 1

2 and otherwise to stop after
taking one step. With this stopping rule we attain our stationary
distribution exactly.
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Example 1.2. Suppose G is the cycle on n vertices. Recall that
the cycle has the property that if you start at a vertex j and walk
until you have hit every vertex at least once, every state except
for j has an equal likelihood of being the last vertex hit. We can
use this fact to find an interesting stopping rule for this graph. As
usual, suppose our starting distribution is σ = j for some vertex
j and our target distribution is τ = π, the stationary distribution.
Because of symmetry, the stopping rule is the same for whichever
j we choose. Additionally, the stationary distribution is

π =
[

1
n

1
n · · · 1

n

]
.

Our stopping rule Γ says to stop with probability 1
n at vertex j

where you started and with probability n−1
n , walk until you have

covered the entire graph. Then you have a 1
n chance of stopping at

vertex j and an equal chance of stopping at every other vertex and
so you have attained the stationary distribution.
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Example 1.3. Suppose G is the n-cube. The 3-cube is
pictured to the right. Suppose you start at the origin. Since
the cube is symmetric, it doesn’t actually matter where you
start. As usual, suppose τ = π, the uniform distribution.
Our stopping rule says to choose a direction at random. For
the 3-cube, this means choose the up-down direction, the
left-right direction, or the forward-backwards direction each
with probability 1/3. Next, flip a coin. If it comes up heads,
move in that direction. If it comes up tails, don’t move.
Once you’ve chosen every direction at least once, stop. Since
this is a lazy walk instead of an actual random walk, just
say that no time passes if the coin comes up tails and you
don’t move. This results in the uniform distribution π since
each coordinate has an equal chance of being 0 or 1.
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We may ask whether there exists a stopping rule for any graph G, any starting distribution σ,
and any target distribution τ . In fact, there are many such stopping rules. The most simple one is
called the naive stopping rule.

Example 1.4. For any graph G, any starting distribution σ, and any target distribution τ , there is
a stopping rule denoted by Ωσ,τ called the naive stopping rule. This rule says to choose some vertex
i according to τ , that is, choose i with probability τi. Then walk until you hit i. This way, no matter
what σ is, you have a τi chance of stopping at i and so you do achieve the target distribution.

2 Mean Length and the Halting State Theorem

The mean length of a stopping rule Γ, denoted EΓ is the expected number of steps you take in
the random walk before stopping according to Γ. A stopping rule is said to be mean-optimal if EΓ
is minimal over all possible stopping rules for the given G, σ, and τ . In general Ωσ,τ is not mean
optimal.

The naive stopping rule always has mean length

EΩσ,τ =
∑
i,j

σiτjH(i, j)

where H(i, j) is the expected hitting time from i to j. This formula follows from the fact that for
each pair of vertices i and j, there is probability σi of starting at i, probability τj of choosing vertex
j to stop, and expected time H(i, j) until you stop.

In general Ωσ,τ is not a mean optimal stopping rule. For example, if σ = τ , the stopping rule
Γ which tells you to stop where you start has mean length EΓ = 0, but as defined above EΩσ,τ is
clearly not zero.

We can recognize when a stopping rule is optimal by means of the Halting State Theorem.

Theorem 2.1. (Halting State Theorem) A stopping rule Γ is mean-optimal if and only if Γ has a
halting state.

A halting state for a stopping rule Γ is a state (vertex) i where if you enter i you stop with
probability one according to Γ.

Example 2.2. In example 1.1, the graph has two halting states, 1 and 3. You may stop at vertex
2, but if you do take a step to 1 or 3, you will certainly stop. Therefore the stopping rule described
is mean-optimal.
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Example 2.3. In example 1.2, there is no halting state. If there were, you would not be able to cover
the graph because you would always stop at the halting state. So the stopping rule Γ described in
this example is not mean-optimal. In fact, the naive stopping rule does better. Certainly, in general
you don’t have to cover the cycle every time to complete the naive stopping rule like you do for Γ.

Example 2.4. In example 1.3, there is one halting state, the point with all coordinates equal to
one. In the 3-cube example, it is 111. By the time you reach the point with all coordinates equal to
one, you must have chosen every direction at least once, so you stop. Therefore, this stopping rule
is optimal.

As mentioned, the naive stopping rule is not in general mean-optimal, but for certain examples,
it may be.

Example 2.5. Consider the walk on a
line of m vertices where our starting dis-
tribution is σ = 1 and our target distri-
bution is τ = π. Then the naive stopping
rule Ω1,π is mean-optimal because it has
a halting state m. Since the naive stop-
ping rule says to stop once you hit your
target vertex i chosen at random from τ ,
then if we make it to vertex m, we must
have passed through every other vertex.
Therefore, our target vertex must have
been i = m and so we stop.

1 2 3 m-1 m

start

3 Proof of the Halting State Theorem

In order to prove the Halting State Theorem, we need the idea of exit frequencies. The exit frequency
xi for the vertex i is the expected number of times you leave the node i during a random walk with
stopping rule Γ. If you stop at i, this doesn’t count towards the exit frequency. Therefore, if i is a
halting state, xi = 0. The following two lemmas will be helpful for the proof of the Halting State
Theorem.

Lemma 3.1. EΓ =
∑
i

xi.

Proof. The left hand side is the expected number of steps you take before stopping. This must be
the sum of the number of times you expect to leave vertex i for each i, which is exactly the right
hand side.

Lemma 3.2. σi +
∑
j

pjixj = xi + τi.

Proof. Each side counts the expected number of times you are in vertex i. The left hand side is the
expected number of times you start at i (counted by σi) or enter i from another vertex i (counted
by
∑
j pjixj) and the right hand side is the expected number of times you leave i (counted by xi)

or stop at i (counted by τi).

With these lemmas in hand, we can now prove the Halting State Theorem.

Proof of the Halting State Theorem. We start by proving the reverse implication, that if Γ has a
halting state, it must be mean-optimal. Suppose Γ,Γ′ are both stopping rules for graph G with
vertices V , starting distribution σ, and target distribution τ . Additionally, suppose Γ has a halting
state h and Γ′ is arbitrary. We will show that Γ is optimal.
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Suppose {xi}i∈V are exit frequencies for Γ and {x′i}i∈V are exit frequencies for Γ′. Define
yi := x′i − xi. Then we use Lemma 3.2 to write

yi = x′i − xi
=
∑
j

pjix
′
j + σi − τi − (

∑
j

pjixj + σi − τi)

=
∑
j

pjix
′
j −

∑
j

pjixj

=
∑
j

pji(x
′
j − xj)

=
∑
j

pjiyj .

If you think about y as the vector with entries yi for i ∈ V , this means that y = yP . Therefore y
must be a multiple of the stationary distribution π. Suppose D is the constant so that y = Dπ. We
can solve for this constant D by using the fact that the sum of the entries of π is 1. If we take the
sum of the entries of y, we get∑

i

yi =
∑
i

(x′i − xi) =
∑
i

x′i −
∑
i

xi = EΓ′ − EΓ,

where the last equality follows from Lemma 3.1. This implies that EΓ′−EΓ = D · 1 = D. Therefore
y = (EΓ′ − EΓ)π and in particular x′i − xi = (EΓ′ − EΓ)πi.

Recall that h was a halting state for Γ and thus xh = 0. This along with the above formula gives
us that

x′h = (EΓ′ − EΓ)πi.

Certainly x′h ≥ 0 and πi > 0, therefore EΓ′ − EΓ ≥ 0 and equivalently

EΓ ≤ EΓ′.

Since Γ had a halting state and Γ′ was an arbitrary stopping rule, this implies Γ is mean-optimal.
It remains to show the forward direction of the theorem, that if a stopping rule Γ is mean-optimal,

then it must have a halting state. In fact, it is sufficient to show there exists some mean-optimal
stopping rule with a halting state. This is clear since if Γ and Γ′ are both mean-optimal stopping
rules, then EΓ = EΓ′, and so if xh = 0, then the formula x′h − xh = (EΓ′ − EΓ)πi implies x′h = 0 as
well.

There are actually many examples of stopping rules with halting states that suffice. A few are
discussed in the next section.

Notice that the halting states must be the same for all mean-optimal stopping rules Γ. If your
starting distribution σ = j and your target distribution is τ = π, then one might instead expect that
h be the state that maximizes H(j, h), the hitting time from j to h, since you are starting at j and
may stopping at or before hitting h. However, somewhat surprisingly, a halting state h is exactly
the state that maximizes H(h, j), the hitting time from h to j.

4 Examples of Optimal Stopping Rules

The four optimal stopping rules discussed here are the filling rule, the shopping rule, the threshold
rule, and the local rule.

The idea behind the filling rule is stop as soon as possible without ‘overshooting’ your target
distribution. (You can’t stop too soon, or you’ll end up close to σ instead of achieving τ exactly.)
This is analogous to the greedy algorithm. An example is below.
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Example 4.1. Consider the graph to the
right. This is the line on 5 vertices. Suppose
σ = 3 and τ = π, the stationary distribution
which for this graph is

π =
[

1
8

1
4

1
4

1
4

1
8

]
.

Then the filling rule says to stop at 3, where
you start, with probability 1

4 . If you don’t
stop, then take one step and stop with prob-
ability 2

3 . If you still don’t stop, then walk
until you hit one of the endpoints.

1 2 3 4 5

start

As you can see with this example, you assign the highest possible probability of stopping without
overshooting τ , but this means that once you leave a node, you definitely won’t stop there (otherwise
you would overshoot τ). Here, we stop at a node distance 0 from the starting point with some
probability, then distance 1 from starting point with another probability, and finally stop if we are
ever distance 2 from the starting point.

The shopping rule assigns a price to each vertex and chooses a starting budget uniformly from
[0, 1]. The shopping rule says to stop when you find a vertex you can afford. The threshold rule
assigns to each vertex j a time hj . We don’t stop at j if we hit j at time t before hj , we definitely
stop if we hit j at time t after hj + 1, and we stop with probability t− hj otherwise. The local rule
assigns some probability of stopping to each node depending on a set of exit frequencies {xi}i∈V
that satisfy the formula in Lemma 3.2. This rule depends only on the node you are at and not on
time like the other three rules.
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