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Abstract. The blanket time of a random walk on a graph G is the expected time until the
proportion of time spent at each vertex approximates the stationary distribution. In 1996,
Winkler and Zuckerman conjectured that the blanket time is of the same order as the cover
time. Ding, Lee and Peres proved this conjecture in 2010 by relating both terms to the
maximum of the Gaussian free field on G. We outline the connection between the blanket
time and the Gaussian free field.

1. Covert Times and Blanket Times

We begin by defining the blanket time of a random walk, discussing an application, histor-
ical aspects, and its relationship to the cover time. Before doing so, we must review several
important concepts. Let G = (V,E) be an undirected graph with n vertices and m edges,
and let {Xt} be a random walk on G. For τ vcov = min{t : V ⊂ {Xs}ts=0} where X0 = v, we
define the cover time

tcov = max
v

E(τ vcov).

Here, τ vcov is the (random) exact time it takes for {Xt} to visit every state when starting
at v, while tcov is the expected time to visit every state, starting from the worst possible v.
Recall the hitting time Hu(v) is the expected time for the random walk to travel from u to
v. We state the best bound for the cover time:

Theorem 1.1 (Matthews’ Theorem). For any G with |V | = n,

min
u,v

Hu(v)n log n ≤ tcov ≤ max
u,v

Hu(v)n log n.

The cover time can be viewed as a measurement of certain types of connectivity for the
random walk. Familiar concepts in this vein include the hitting time and the commute
time κuv = Hu(v) + Hv(u), which measures the expected time to go from u to v and back.
The blanket time time is a similar quantity, measuring the expected time it takes to visit
every state approximately proportional to the stationary distribution. In order to define the
blanket time, we must quantify the amount of time spent at each state. For the remainder
of the paper, it is assumed that X0 has some known initial distribution ν. The local time at
v is

Lvt =
E(
∑t

s=0 1Xs=v)

πv
.

This quantity represents the proportion of time spent at v up to time t. Note

E(
t∑

s=0

1Xs=v) ≈ πvt
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for t large, so Lvt → 1 as t→∞. For δ ∈ (0, 1), the δ-blanket time is

tδbl = min{t : max
u,v

Lut
Lvt

> δ}.

Since Lut , L
v
t → 1, this must hold for large enough t.

We motivate the definition of the δ-blanket time with an example. We present an algorithm
inspired by the Google page rank algorithm. Our graph is the internet, where each edge is
represented by a link. Note this graph structure is directed, while our results will only
apply to non-directed graphs (reversible Markov chains). We start a web surfer at a random
website who clicks on links at random and record each site she visits. With some positive
probability, she grows bored and goes to a new random website. This defines a Markov chain
on the internet. A website v has page rank proportional to the amount of time such a walker
spends on it, i.e. proportional to πv. We wish to estimate this by examining the progression
of one such surfer and ranking a website according to the number of visits. The blanket time
represents the time we expect this estimate to become relatively accurate.

The blanket time was first introduced in [7] by Winkler and Zuckerman. Here, the following
bold conjecture is made:

Conjecture 1. Let G be a graph. For each δ ∈ (0, 1), there exists Cδ depending solely on δ
such that

tδbl ≤ Cδtcov,

or equivalently
tδbl �δ tcov.

In [7], Winkler and Zuckerman verified the conjecture when tcov � n log n. This is true for
most graphs. Additionally, they verify the conjecture for cycles. In [4] Kahn, Kim, Lovasz
and Vu show that

tδbl = O(tcov(log log n)2).

This result is probably good enough for Google, but not quite enough. Finally, in [2], the
conjecture was proved by Ding, Lee and Peres.

Theorem 1.2. For G a graph,

tcov � mE(max
v∈V

ηv)
2 �δ tδbl

where {ηv} is the Gaussian free field on G.

The remainder of this paper is devoted to explaining the presence of this middle term and
outlining its role in the proof of this theorem.

2. The Gaussian connection to Blanket Time

We begin by arguing heuristically that the blanket time will be related to the maximum
of some Gaussians for t large. First, let τOcov be the (random) time to cover G and return to
the initial vertex. Note this is an excursion, hence LvτOcov is a random variable, and we can

construct a sequence of identically distributed such variables within our random walk. Pick
k large. By the Central Limit Theorem, the sum of k such variables will be approximately
normal. The rate of convergence will depend on the variance of LvτOcov . For any given v, we

can pick k such that we expect the average to be as close as we like to the expected excursion
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length. However, in order to gain control of the ratios, we must have some control over the
maximum of these Gaussian averages over all v. Additionally, since LuτOcov and LvτOcov are not

independent, we must be able to account for some correlation between Gaussian random
variables. We outline this connection, both in a more formal and fully rigorous fashion.

First, we introduce Gaussian processes. We say the random variables {gx}x∈S form a

Gaussian process if any finite linear combination
∑k

i=1 cigxi has a Gaussian distribution. A
key property of a Gaussian process is that it can be defined by specifying the covariance
K(x, y) of each x, y ∈ S (see e.g. [1]). These processes are one of the major areas of study
in probability. Important examples include Brownian motion, the Brownian bridge, the
Ornstein-Uhlenbeck semi-group and the Gaussian free field. Because they are so well under-
stood, we will gain an enormous amount of tools by relating our problem to the Gaussian
free field of G.

For a given metric space (S, d), we can define a Gaussian process by specifying√
E(|gx − gy|2) = d(x, y).

By requiring gx0 = 0 for some xo ∈ S, we can recover the covariance matrix. Note the
commute time κ clearly defines a metric on V . Additionally, since the effective resistance R
is proportional to the commute time, we see it forms a metric as well. The Gaussian free
field of a graph G is the Gaussian process {ηv}v∈V determined by specifying

E(|ηu − ηv|2) = Ruv,

or equivalently the Gaussian process derived from the metric space (V,
√
R).

We now relate the Gaussian free field to the local time. Fix v0 ∈ V and let Γv0(u, v) =
Ex(LvHu(v)

). It is a theorem that the Gaussian free field of G has covariance function Γv0(u, v)

(this is not obviously symmetric). This connection be strengthened greatly. Define the
inverse local time τ(t) of v0 ∈ V by

τ(t) = min{s : Lv0s > t.

This is the first time s that the chain has spent t/πv0 time at state v0. If we consider instead
the continuous random walk on G, we have the generalized second Ray-Knight isomorphism
theorem, as stated in [3].

Theorem 2.1 (Isomorphism Theorem).{
Lxτ(t) +

1

2
η2x : x ∈ V

}
=d

{
1

2
(ηx +

√
2t)2 : x ∈ V

}
where =d signifies equality in distribution.

This explicit formula is the key tool in proving, for the continuous walk, that

tbl ≤ Aδm(E(max ηx))
2

where Aδ ≈ 1/(1 − δ)2. The basic idea of the proof is as follows. For t sufficiently large
compared to E(max ηx), we will have Lxτ(t) and t much larger than η2x for all x. Therefore,
we can explicitly relate Lxτ(t) and t via the isomorphism theorem and show that the error
introduced by the remaining terms of the relation is negligible. In particular, we must show
this holds for both minx L

x
τ(t) and maxx L

x
τ(t), so that their ratio can be controlled. The tool

used to do so the following concentration inequality (see e.g. [5]).
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Lemma 2.2. Let {ηx}x∈S be a Gaussian process and define σ = supx
√

E(η2x). Then for all
α > 0,

P(| sup
x
ηx − E(sup

x
ηx)| > α) ≤ 2 exp(−α2/2σ2).

Upon completing this argument, the we must then show that the blanket time of the
discrete and continuous walks are of the same order. This result is quite technical, though
intuitively clear. Making this outline rigorous is a non-trivial endeavor, and we omit the
proof.

3. Analogies to the cover time

The connection between the Gaussian free field and the cover time are significantly more
challenging to understand. We paint an impressionistic picture of why one would expect
the two to be related, and a few words on how the connection is demonstrated. We draw
analogies between the Gaussian free field and the Matthews’ bound Theorem 1.1. The upper
bound from Theorem 1.1 can be related to a union bound for the Gaussian free field: compare

tcov ≤ max
u,v

Hu(v)n log n

and

(E(M))2 ≤ 2 max
x

E(X2
x) log n

where M = maxx ηx. The lower bound from Theorem 1.1 has a similarly strong analogy in
the Gaussian setting.

Theorem 3.1 (Sudakov minorization). Let {ηx}x∈S} be a Gaussian process with |S| = n
and d(x, y) ≥ α for x 6= y. Then

E(M) ≥ α
√

log n.

This result can be found in [6]. While these analogies are not so overt as to be instantly
compelling, there are several more. One relates an entropic result to the cover time, while
another relates concentration results of Gaussian processes to concentration results of local
times. The actual proof is quite difficult, relying on an important result of Talagrand’s
known as majorizing measures.

We outline the strategy of the proof. Consider to vertices u and v close to each other
with respect to R. If Lut is large, we would expect that a substantial proportion of the time
between visits to u will be spent at v, to Lvt should be large as well, i.e. Lut and Lvt should be
highly correlated. For u and v far apart with respect to the metric R, we expect that their
local times at time τcov are nearly independent. The proof uses the isomorphism theorem,
but with greater delicacy, as we must show some local time is exactly zero. This error is
controlled by grouping the local times of vertices according to their distance with respect to
R. However, it is not enough to group at the global level. We must construct such groupings
at many scales. Majorizing measures is a technique for doing this optimally with Gaussian
processes. The proof relies on constructing an analogy to this process for the local times,
and using results from the literature on Gaussian processes to make this connection explicit.
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