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Overview

In Dumitriu et al. [1], the authors define a whirling tour on a finite tree as
follows:

Let T be any tree, possibly with loops. Fix a target vertex t, and
let v be any other vertex. Order the edges (including loops) incident
to each u 6= t arbitrarily subject to the edge on the path from u
to t being last. Now walk from v by choosing each exiting edge
in round-robin fashion, in accordance with the edge-order at the
current vertex, until t is reached. For example, if the edges incident
to some degree-3 vertex u are ordered e1, e2, e3, then the first time
u is reached it is exited via e1, the second time by e2, the fourth
time by e1 again, etc. We call such a walk a whirling tour.

The authors claim that this tour possesses the following property: In any
finite tree (possibly with some loops) the length of any whirling tour from v to t
is exactly the expected hitting time from v to t. Dumitriu et al. leave the proof
of this claim to the amusement of the reader. The following is one approach
towards proving this claim.

Notation

We define the following notation. We will label vertices slightly differently than
in the paper: y will indicate the starting vertex and x will indicate the target
vertex. Additionally:

Ty = The tree consisting of all nodes reachable from x only via y.
ey = number of non-loop edges in Ty
ly = number of loops in Ty
dy = degree of y in Ty
whirl(y, x) = length of a whirling tour from y to x
y ∼ x indicates y is adjacent to x, and x ∼ x indicates that there is
a loop on x.
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For some node z, the first dz edges in the edge list of z are called child edges.
The final edge in the list (the edge on the path from z to x) is called a parent
edge. Lastly, henceforth the term ”edge” will only indicate a non-loop.

We begin by looking at the length of a whirling tour between two adjacent
nodes (Thm 1). We will then show that the expected hitting time between two
adjacent nodes is equivalent the length of the whirling tour (Thm 2). Lastly, we
will prove that this equivalence generalizes to non-adjacent nodes as well (Thm
3).

Theorem 1: If y ∼ x, the length of a whirling tour from y
to x is 2ey + ly + 1

In order to prove this claim, we will need three lemmas. These lemmas only
apply to whirling tours between adjacent vertices y ∼ x.

Lemma 1: If we reach some arbitrary non-leaf v, every child edge
is visited exactly twice and every loop is visited exactly once before
taking the parent edge.

• Loops are traversed once and will not be taken again before the parent
edge. Recall that a loop contributes only once to the degree of a vertex z.
Thus, it will appear only once in the edge list of v.

• If an edge leads to a leaf, it is simply traversed immediately back to v.
Thus child edges leading to leaves are traversed exactly twice.

• If an edge leads to a non-leaf, w, we must guarantee that it will return
to v. This is simple. Because we are walking on a tree, the only way to
return to w is on the edge (w, v). By contradiction, if we never returned on
(w, v), then we took some child edge (w, u) and never returned to w. If all
child edges from w had been taken and returned on, we would have surely
returned to z already. The exact same logic can be applied to u. There
must have been some child edge of u that we took and never returned on.
This logic continues infinitely, which is a contradiction since our tree is
finite. Thus, it must be that we always return z.

Lemma 2: All vertices in Ty are reached

If some vertex v was not reached, then by Lemma 1 it’s parent node wasn’t
reached. Continuing this logic inductively, we would conclude that y was never
reached. This is a contradiction because we start at y. Thus, all nodes Ty must
have been reached by the whirling tour from y to x.

Lemma 3: After leaving some node v by taking its parent edge, we
never visit v again on the whirling tour.

When we take the parent edge of v, we traverse back to the parent vertex of
v, p(v). We visit the remaining child edges of p(v), and then we move to the
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parent of p(v), p(p(v)). Following this logic, it is evident that we will return to
y.

Conclusion

By Lemmas 1, 2, and 3, and the fact that every edge in Ty belongs uniquely to
some non-leaf node in Ty, whirl(y, x) = 2ey + ly + 1 for y ∼ x.

Theorem 2: Eyτx = 2ey + ly + 1 in the case where y ∼ x

Observe the following additional notation.

λy = expected return time to y for random walk on Ty.
Eyτx = expected hitting time from from y to x.
1expr = 1 if expr is true, and 0 if expr is false.

If we start a random walk at y, we have a 1
dy+1 probability that we will step

to x on the first try, and a
dy

dy+1 probability that we will not. If we do not, we

must return to y and begin the random walk from y to x once again. Thus:

Eyτx =
1

dy + 1
· 1 +

dy
dy + 1

· (λy + Eyτx)

= 1 + dyλy (1)

Additionally, to compute λy we can consider two possibilities. If we take a
loop away from y, the return time equals 1. Otherwise, the return time equals
the initial step we took away from y plus the time to return to y. We consider
the average of these possibilities.

λy =

∑
z∼y

[1z 6=y(1 + Ezτy) + 1z=y]

dy
(2)

This leads to the following recursion

dyλy =
∑
z∼y

[1z 6=y(1 + Ezτy) + 1z=y]

=
∑
z∼y

[1z 6=y(2 + dzλz) + 1z=y]

=
∑
z∼y

[2 · 1z 6=y + 1z=y] +
∑
z∼y

1z 6=y(dzλz)

(3)

This recursion shows that every edge in Ty will be counted twice and every
loop will be counted once. Thus, dyλy = 2ey + ly. Note that the 1z 6=y term
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in the left summation prevents infinite recursion from occurring. Plugging this
result back into (1), we have our final result: Eyτx = 2ey + ly + 1. (Parts of this
proof are borrowed from J.W. Moon [2]).

Now we know that the authors’ claim holds true if y and x are adjacent.
Next, we’ll show that this equivalence generalizes to non-adjacent nodes.

Theorem 3: If x1, x2, ..., xn is the unique path from x1 to xn,
whirl(x1, xn) = whirl(x1, x2)+whirl(x2, x3)+ ...+whirl(xn−1, xn).

Because T is a tree, the whirling tour from x1 to xn must visit all vertices on
the unique path connecting x1 and xn. Consider this whirling tour at the point
it first reaches x2. At this point, we have effectively performed a whirling tour
between adjacent nodes x1 and x2. By Lemma 3, the last edge taken from every
node in Tx1 was the parent edge, so the edge list for every node in the graph
is set to its first edge. Thus, the next sequence of steps behaves exactly like a
whirling tour from x2 to x3. This pattern continues until we reach xn.

Conclusion

Note that, due to linearity of expectation and the uniqueness of the path from
x1 to xn, Ex1

τxn
is equal to the expected hitting times between adjacent nodes

on the path from x1 to xn. This gives us our final result:

Ex1
τxn

= Ex1
τx2

+ ...+ Exn−1
τxn

= whirl(x1, x2) + ...+ whirl(xn−1, xn)

= whirl(x1, xn)
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