
The Gittins Strategy: Choosing from Multiple Markov
Chains

Seth Harris

March 16, 2011

1 Introduction: Markov systems and games

Suppose you are playing a game of chance, such as taking a random walk to reach a target.
You can often choose among multiple strategies to reach the same goal, and often it is in your
best interest to continually change your strategy depending on how your game progresses.

For example, consider the following random walk on a number line with vertices from 0
to 5 (see Figure 1 below). There is a prize at vertex 3, and we have two starting tokens at
vertices 2 and 5. Elementary proababillty theory shows that if we start at vertex 2, we can
expect to reach the prize in 32−22 = 5 moves, whereas if we start at vertex 5, we can expect
to reach the prize in 22 = 4 moves. However, we shall show later that the optimal strategy
is to move the token at vertex 2 once, and if it happens to go to the left, switch to the token
at vertex 5 until the end. With this strategy we can expect to hit the prize in 1 + 1

2
(22) = 3

moves.
Dumitriu, Tetali, and Winkler [1] introduce a quantity called the grade of the Markov

system, which in some way measures the desirablility of playing that system. It is a small
variation on the more famous Gittins index (see [2]), another metric of the reward of a
stochastic process. The Gittins index differs from our grade in that its Markov systems have
no target, and have a probability of terminating at every stage and an associated discount
β. We will use the name “Gittins strategy” for the optimal strategy of choosing between
Markov games.

We will be dealing with Markov systems S = 〈V, P, C, s, t〉, with V a set of states, P
a transition matrix between states, C a vector of costs for moving to each state, a source

Figure 1: We can get to the gift using two possible tokens.

1

state s and a target state t. Our goal is to minimize the total cost of a random walk from
the source s to the target t. When we combine several Markov processes, we can view it
as a game G in which in which we choose a strategy (i.e. choose which token to move) for
reaching one of the targets. S1◦S2◦ . . .◦Sk is a multitoken Markov game: we choose one of k
tokens, follow the associated Markov chain, and pay the associated cost. On the next move,
we can choose any other token to move; upon reaching any of the targets, we stop. For
any game G, E[G] is defined to be the minimum expected cost over all possible strategies;
a strategy which achieves this minimum is said to be optimal. The join of multiple games,
G = G1�G2� . . .�Gn, is defined similarly: choose to play one of the Gi’s, switch games at
any time, and the join ends when any of its games ends. A player is indifferent among a set
of moves if each move is part of an optimal strategy. One particularly simple game that we
will use in our proof is the terminator game Tg = 〈{s, t}, P, g, s, t〉. Here ps,t = 1; in other
words, we just pay a cost of g to make a single move.

2 The grade and the Gittins strategy

The key metric for comparing multiple Markov systems is the grade.

Definition 2.1. The grade γ(S) of a Markov system S is the unique value of g such that a
player is indifferent in Gg = S ◦ Tg.

So there is a unique cost, g, such that that a player is indifferent between simply paying
g dollars at the outset, or playing the game S and paying all its associated costs. It can be
shown that for any strategy σ for Gg, E[σ] is linear in g; therefore, the minimum expected
cost over all strategies, E[Gg], is piecewise linear in g. On the following page (Figure 2) is
a typical graph of E[Gg] versus g. When g is too high, one always chooses to play S; hence
the graph is horizontal at E[S]. When g is too low, one always chooses to pay g up front;
hence the graph has slope 1. This leftmost piece of the graph has maximum value γ(S), the
grade, representing indifference of playing S or paying g. For intermediate values of g, one
starts by playing S but may switch depending on how the game progresses.

We can also talk about the grade γu(S), the grade of the game starting at vertex u rather
than the source. Thus γs(S) = γ(S). For a given g, the optimal strategies for Gg are easy to
characterize:

Proposition 2.2. A strategy for Gg = S ◦ Tg is optimal if and only if it chooses S whenever
we are in a state u with γu < g and chooses Tg whenever γu > g.

Our major result is the following:

Theorem 2.3. A strategy for G = 〈S1 ◦ . . . ◦ Sn〉 is optimal if and only if it always plays a
system whose current grade is minimal.

This strategy is known as the Gittins strategy, named for the Gittins index described in
the introduction. We will use a series of easy lemmas to prove 2.3. We start by reformulating
each original game as a “reward game” Si(g), where we pay and play as in Si and may quit
at any time, but there is a reward of g at the target.

2

Figure 2: The expected cost of Gg is piecewise linear in g.

Lemma 2.4. Let g = γ(Si). Then Si(g) is a fair game; that is, E[Si(γ(Si))] = 0. Moreover,
a strategy is optimal if and only if the player quits whenever γu > g and plays on when
γu < g.

This is fairly easy to see: it is essentially a translation of our terminator game, only
instead of having a cost of γ(Si) upon quitting and no reward at the target, we have no cost
upon quitting and a reward of γ(Si) at the end. The optimal strategies are clearly equal,
and by Proposition 2.2, the strategy is to quit when γu > g and play on when γu < g. Since
one optimal strategy is to quit right away (because then one is indifferent), the expectation
of the game is 0; hence the game is fair.

We now slightly change our game to a “teasing” reward game S ′
i: whenever you reach a

state u with γu > g, your reward at the end is boosted up to γu.

Lemma 2.5. S ′
i is also a fair game.

As the original reward game Si(γ(Si)) is fair, and since the additional reward increases
precisely when the expected cost increases, the new game is also fair. Now we analyze the
join of these teasing games:

Lemma 2.6. G ′ = S ′
1� . . .�S ′

n is also fair.

G ′ clearly cannot be worse than fair, since one can just choose to play S1 at every move.
But it cannot be better than say S1, as it can only cost more before the target is reached.

To show that the Gittins strategy is optimal for our original game G, we first note that
it is optimal for G ′:

Lemma 2.7. The Gittins strategy Γ is optimal for G ′.

3

Lemmas 2.4 and 2.5 together imply that Γ plays each individual S ′
i optimally, since it

chooses to stay in S ′
i if and only if the current grade is below the reward. So Γ will also play

G ′ optimally.

Lemma 2.8. Of all nonquitting strategies for G ′, the Gittins strategy Γ reaps the smallest
expected reward in the end. Moreover, Γ is the only nonquitting strategy with this property.

Thus without the move-costs, Γ would actually be the worst strategy for G ′. The intuition
behind this lemma is that the higher rewards always correspond to the grade going up. Since
we’re using the one strategy which deliberately always chooses the lowest possible grade, it
must also be the unique strategy with the lowest possible expected reward.

We are now ready to prove that Γ is an optimal strategy for our original game G =
S1 ◦ . . . ◦ Sn, and in fact the unique one:

Proof of Theorem 2.3. Let us recall that in G, there are no rewards at all, and that an
optimal strategy for G will simply choose among S1, . . . ,Sn in a way that minimizes the
total cost. For any nonquitting strategy ∆ for G ′, let C(∆) be its expected cost and let
R(∆) be its expected reward. Since G ′ is fair, E[∆] = R(∆) − C(∆) ≤ 0. But by Lemma
2.7, we have E[Γ] = 0 in G ′; thus C(Γ) = R(Γ) ≤ R(∆) ≤ C(∆), the middle inequality
following from Lemma 2.8. But C(Γ) ≤ C(∆) precisely shows that Γ is an optimal strategy
for our original game G.

Moreover, if ∆ is another optimal strategy, then the above inequalities must be equalities.
So ∆ also reaps the minimum reward for G ′, and so by Lemma 2.8, ∆ is also Gittins strategy.
So we have the converse.

3 Computing the grade

The grades of all states of a Markov system can be computed in polynomial time, specifically
O(n5). The following theorem will be crucial in defining our algorithm:

Let {s, t} ⊆ U ⊆ V . Define a new game S � U as follows: If we are currently in U and
try to travel outside U , we restart at s. Formally this means that the transition matrix is
equal to that of S for states outside of U , but for each u ∈ U , the transition probability pu,s
is increased by Σv∈V \U pu,v.

Theorem 3.1. With S and U as above, γs(S) ≤ Es[S � U], with equality if U contains all
states of grade lower than γs and no states of grade higher than γs.

Proof. Imagine a reward game that pays γs when we reach our target, and consider the
strategy σ that chooses to quit the game whenever we restart. Since the reward game is fair,
it has nonpositive expectation. If we play of series of these games until we reach our target,
the resulting game will still have nonpositive expectation, the total reward will be γs(S), and
the total expected cost will be Es[S � U]; therefore, we have our inequality. On the other
hand, if U is as described, we know by Lemma 2.4 that σ is optimal (in both situations we
quit if the grade is greater than the reward), and so we have an equality.

4

This idea of restricting our game to a subset of states will enable us to compute the grade
in polynomial time.

Theorem 3.2. For a Markov system S, the following algorithm will compute γ(S).

Proof. This will hopefully be a clear sketch of the algorithm; for a complete pseudocode see
[1]. For any given set of states U , let N(U), the neighborhood of U , be the set of states that
can reach U in one move; i.e., N(U) = {v ∈ V | pv,u > 0 for some u ∈ U}.

1. Begin with U = {t}; clearly γt = 0.

2. For each state v in N(U), compute Ev[S ′], where S ′ = S � (U ∪ {v}).

3. Compare all values of Ev[S ′] among states v ∈ N(U). Choose the v with the least such
value and add it to U . Declare this value to be the grade γv(S).

4. Repeat steps 1-3 until U = V .

Why does our “declaring” Ev[S ′] to be γv(S) work? By Theorem 3.1, as long as U
contains all states of grade lower than γv and no states higher than γv, we have γv = Ev[S ′].
This is clearly true for our U as long as we’re sure of one thing: that among all states not in
U , the state of lowest grade is in N(U). Observe that as long as we can go from the source
to the target in finite time, there will be a path from s to t of decreasing grade. Thus if
the smallest-graded state not in U were outside N(U), there would be a decreasing-graded
path into U , which would pass through a smaller-graded state in N(U), a contradiction.
Therefore, our algorithm accurately computes the grades of all states in V .

To analyze the computing time, suppose we are in step i of the algorithm out of a total
of n steps. The most costly part of the algorithm is finding Ev[S ′], which involves solving
an (i+ 1)× (i+ 1) system of equations, requiring O(i3) steps. In step i, we have to compute
this for every state in N(U), and |N(U)| = O(n− i). So the total computation time will be
O(Σn

i=1(n− i)i3) = O(n5).
To illustrate this algorithm, let us return to the random walk on vertices 0 to 5 in Figure

1. While we will not compute every possible grade, we will indeed prove that the optimal
strategy is to start at the token at 2, and if that fails, play the token at 5. I will call the two
Markov systems S and T , with S representing moving the token on 2 and T representing
moving the token on 5; thus we are playing the game S ◦T . Letting our algorithm guide us,
we start by computing the grades at points that are neighbors to 3: computing γ2(S) and
γ4(T). (Computing γi(S) for i > 3 is irrelevant, since our token will reach our target before
ever going there; similarly computing γj(T) for j < 3 is irrelevant.)

To find the grade γ2(S), we consider the game restricted to U = {2, 3}, so that whenever
we go to the left to vertex 1, we effectively have a loop bringing us back to 2. Our game
thus is a Bernoulli process (success moving to the right, failure looping back to 2) which has
expected time 2. So γ2(S) = 2; similarly, γ4(T) = 2.

5

Next comes computing the grade two vertices from the target. For γ5(T), our restricted
neighborhood U is {2, 3, 4, 5}, so it’s really not a restricted game at all, and the expected
time of the game is 4, just like it is normally. Now for γ1(S), our restricted neighborhood U
is {1, 2, 3, 4}. So effectively we’re looking for the hitting time on the line from 1 to 3, plus a
loop at 1. It is easy to see that this hitting time must be strictly greater than 4.

The above analysis suffices to deduce the Gittins strategy for S ◦ T . Our initial grades
are γ2(S) = 2 and γ5(T) = 4, so we initially choose to move the token on 2. If we happen to
move to the left, then compare our grades: γ1(S) > 4, γ5(T) = 4, and γ4(T) = 2. Therefore,
we always will choose to play the game T , since it will always be the game of minimal grade.
Thus we have shown that this strategy is the optimal one in the game S ◦T , and indeed the
unique one, since we were never indifferent between the two games at any point.

4 A small note on infinite random walks

Thus far, we have assumed that our Markov systems are finite. However, the grade is defined
for infinite Markov systems as long as they are locally finite; that is, as long as each state
can only move to and from finitely many other states:

Theorem 4.1. Let S be an infinite, locally finite Markov system with a designated target
state t. Then γu < ∞ for all u ∈ V . Moreover, if we fix u ∈ S, there is a finite Markov
subsystem S ′ ⊂ S such that γu(S) = γu(S ′).

Details of this proof are found in [1].

References

[1] I. Dumitriu, P. Tetali, P. Winkler, On Playing Golf with Two Balls. Siam J. Discrete
Math. 16 (2003), 604-615.

[2] J. Gittins and G. Jones, A dynamic allocation index for the design of experiments,
Progress in Statistics, Colloq. Math. Soc. János Bolyai 9, J. Gani, K. Sarkadi, and I.
Vince, eds., North-Holland, Amsterdam, 1974, pp. 241-266.

6

