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1 Abstract

Doyle & Snell (1984) [2] exposed many interesting connections between random walks and

electrical network theory, by viewing an undirected graph as an electrical network in which

each edge of the graph is replaced by an unit resistance. Their work and other follower’s work

provide many useful tools from electrical network theory that can offer intuitive understanding

of random walk behavior on the graph. Some counter-intuitive phenomenon in random walk

can be explained with these new tools. One of the counter-intuitive examples is that, under

certain circumstances, the cover time will increase by adding edges to the graph. For example,

we can transform a line graph to a lollipop graph by adding edges to the original graph, yet

with the cover time increased. Before using this electrical network language, we are not able

to describe what has changed in the graph after adding edges in a way both quantitatively and

qualitatively. We will show effective resistance, a tool borrowed from the electrical network

theory, will give a good explanation of the phenomenon. And we will use this tool to study

random walks on regular graph, a sharper(O(n2)) upper bound for cover time on d-regular

graph was found with this tool.

2 Introduction

In computer science, graph traversal is the problem of visiting all the nodes in a graph. It is well

known that deterministic solutions such as DFS or BFS can be achieved with a time complexity

of O(|E|) and space complexityO(|V |) (for a connected graph G =(V,E)). Deterministically
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following a O(n3) universal sequence, we can also traverse the graph. For the same problem,

random walk just needs O(1) space(it just needs to keep track of the current vertex visited),

yet the Cover Time is bounded byO(|V ||E|)[1]. In this paper, the main subject was to show

how to utilizes several electrical theory tools to better capture the structural constraints of the

network and thus find better bounds for the cover time. In section 3, we will present several

tools in the arsenal to solve this problem. In section 4, 5, 6, We will use those tools to study 3

important electrical properties, Rst,Rspan, δst(excess resistance) in d-regular graph. In section

7, we will use all these electrical languages to find stronger bounds of cover time.

3 Random walk and electrical network equivalencies

In electrical theory, the electrical resistance of an electrical conductor is the opposition

to the passage of an electric current through that conductor; the inverse quantity is electrical

conductance, the ease at which an electric current passes. Electrical resistance shares some

conceptual parallels with the mechanical notion of friction. [6].

Since Doyle & Snell (1984) [2], many equivalences between electric networks and ran-

dom walks on graph has widely been known. Since the electrical resistance captures the

opposition of electrical current passage, in its random walk equivalency, we want to study how

this electrical property electrical resistance relates to the difficulty of finishing a random

walk task, i.e. the length a random walk take to finish the task. For example, the difficulty of

hitting some node, visiting all nodes, etc. Among all of these, a most impressive result relating

the random walk lengths to electrical network resistance is captured by the commute time.

The resistance in the electrical network actually can give exact values for commute times on

corresponding graph. In this section, we study resistance values of d-regular graph and show

how they can help use get better estimates of cover time.

Let G=(V,E) be an d-regular undirected connected graph with |V | = n vertices and

|E| = m edges. Let N(G) denote the corresponding electrical network with each edge replaced

by a unit resistor.

Definition 3.1. ∀s, t ∈ V , the hitting time H(s,t) is defined as the expected number of

steps to first visit t from s. The commute time C(s,t) = H(s,t) + H(t,s) which denotes the

expected time the random walk take to traverse from s to t and then back to s.
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Definition 3.2. ∀u ∈ V , the cover time from u is defined as Cov(G,u), expected number

of steps to visit all vertices starting from u. Cov(G), the cover time of the graph, is defined

as maxuCov(G, u) over all vertices u.

Definition 3.3. ∀s, t ∈ V , Rst denotes the effective resistance between the corresponding

nodes in N(G) , i.e.,the potential difference required between s and t to send a current of one

amp from s to t.

Definition 3.4. effective resistance of spanning tree Rspan denotes the sum of effective

resistances of all edges in the tree,

Definition 3.5. effective resistance of the graph G RG denotes maximum effective re-

sistance between any pair of vertices.

After introducing these concepts and properties, we begin our study and solving our doubts:

in a intuitive way, if more opposition (effective resistance) exists between vertices s and t, is it

more difficult task for an random walker to reach each other? With the results from [3], we

will answer this question with an affirmative answer.

Lemma 3.1. For all s,t, the commute time C(u,v) = 2mRst.

In addition, with results from [3], we are able to use commute time to upper bound the cover

time.

Theorem 3.2. For any connected graph G, cover time Cov(G) ≤ 2mRspan

Serial Connection : Resistors that are connected in series can be replaced by a single resistor

whose resistance is the sum of the resistances.

Parallel Connection : Resistors that are connected in parallel can be replaced by a single

resistor whose conductance is the sum of the conductances.

Rayleigh’s Short-Cut Principle: : Resistance is never raised by lowering the resistance on

an edge, e.g., by “shorting” two nodes together, and is never lowered by raising the resistance

on an edge, e.g., by “cutting” it. Similarly, resistance is never lowered by “cutting” a node,

leaving each incident edge attached to only one of the two “halves” of the node.

Foster’s theorem: For connected graph G=(V,E), the sum of the effective resistances along

the edges of G satisfies:
∑

(s,t)∈E Rst = n− 1
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The upper bound for the cover time in this section was developed by [1]. It’s obvious that

the proof gives a rather loose upper bound which utilized little information on the structure of

the graph except the undirected nature of the graph and the number of edges. With all these

tools introduced in this section we begin to study to better our understanding of random walk

behaviors on d-regular graph and its electrical network equivalences [4].

4 Rst on d-regular graph

Proposition 4.1. The effective resistance between any two vertices u,v∈V satisfies:

Ruv ≥ 2
d+1

Proof. To use Rayleigh’s Short-Cut Principle, separate this problem into 2 cases:

case 1: if (u, v) /∈ E:

Construct from G a new graph G′ = (E ′, V ′) by Collapsing all vertices of G which are not

connected with u or v to a single vertex w, we will have: V ′ = {u, v, w}. |E ′| = d+ d.

By parallel connection,

R′uw =1
d
. R′wv =1

d
.

By serial connection,

R′uv = R′uw + R′wv = 2
d

By the shortcut principle,

Ruv ≥ R′uv

Based on the analysis:

Ruv ≥ 2
d
.

case 2: if (u, v) ∈ E:

Under this circumstances, if we can replace the edge (u,v) to another electrical equivalency

and with the two vertices dis-connected, we can run similar analysis as case 1 did on case 2. we

modify the edge(u,v) as Fig1 shows (then the degree of each of the vertices u and v increased

by 1): Construct another graph G′ in the similar previous way by collapsing all vertices which

is not connected with u or v to a single vertex w. Based on the previous analysis:
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Figure 1: serial to parallel.

Ruv ≥ 2
d+1

.

5 Excess resistance

Definition 5.1. The excess resistance δuvofedge(u, v) ∈ E is defined by:

δuv = Ruv − ( 2
d+1

)

Observe that by Proposition 4.1, δuv ≥ 0.

The following identity plays a fundamental role in turning structural constraints to better

effective electrical resistance upper bounds:

Lemma 5.1. : On d-regular connected graph G=(V,E), the sum of excess resistances along

its edges is a constant and satisfies:
∑

(u,v)∈E δ[(u, v)] = n− 1− nd
d+1

Proof. From the definition, we have
∑

(u,v)∈E δ[(u, v)] =
∑

(u,v)∈E(R(u, v) - 2
d+1

)

G is a regular graph, we have m= |E| = nd
2

From Foster’s theorem, we have
∑

(u,v)∈E R(u, v) = n-1

Re-arrange the formulas above, we can get the proof.

6 Rspan on d-regular graph

We now turn to bound Rspan, the resistance of the spanning tree of minimum resistance.

Theorem 6.1. : In connected d-regular graphs, the resistance of any spanning tree T satisfies:

2(n−1)
(d+1)

≤ R(T ) ≤ 3(n−1)
(d+1)
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Proof. From the fact that any spanning tree in graph G has n-1 edges, and the lower bounds

on the effective resistance of an edge, we have the lower bound:

R(T ) ≥ 2
(d+1)

× (n− 1)

According to the definition of excessing resistance, we have

Rspan = (n− 1)× 2
d+1

+
∑

(u,v)∈T δ[(u, v)]

From the fact that any spanning tree has less edges than the graph itself.∑
(u,v)∈T δ[(u, v)] ≤

∑
(u,v)∈E δ[(u, v)],

According to Lemma 4
∑

(u,v)∈E δ[(u, v)] is a constant, we get the upper bound :

Rspan <= 3(n−1)
(d+1)

Observe the relationship, you can easily get an idea that all spanning trees in a regular graph

have roughly the same effective resistance.

7 Cover time

In [3], the upper bound for cover time was reached through the use of commute time measure

and the identity Cov(G) ≤ 2mRspan. The commute time measure naturally leads us to study

Rspan on the corresponding electrical network. We also show how to utilize Rst to study

Rspan. In addition, we show how to use a designed excess resistance measure to capture the

interaction between lower bound for Rst and constraints of the network from Foster’s theorem,

which finally leads to a better upper bound for Rspan and O(n2) cover time upper bound.

In [5] a sharper bound 2n2 of cover time for d-regular graph was found. One distinction

between the two methods deserving a final mention is that the later method mainly depends

on a well applying of another random walk tool: difference time.

commute time C(s,t) = H(s,t) + H(t,s).

difference time D(s,t) = H(s,t) - H(t,s).
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8 Summary

There are a lot of techniques to study the cover time problem. We mainly study in this paper

the importance of good tools in getting better observation of a mathematical problem. The

deep connections between random walk on graph and electrical network enabled the transfer

of tools in theses two field and shed lights to each other.

References

[1] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovàsz and C. Rackoff(1979), Random walks,
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