
Random Walks and Random Spanning Trees

Vijay Kothari

March 4, 2013

Abstract

We explore algorithms for generating random spanning trees. We first study an
algorithm that was developed independently by David Alduous [1] and Andrei Broder
[2]. The algorithm uses a a simple random walk in which edges that correspond to the
first visit to vertices are added to the spanning tree. Analysis was inspired by Andrei
Broder’s paper. Additionally, we study an algorithm by David Wilson [5] that uses
loop-erased random walks and employs a clever cycle-popping proof.

1 Introduction

Before discussing the problem, we review some terminology. Let G = (V,E) be a finite,

connected, undirected graph. Let n = |V | be the number of vertices, m = |E| be the number

of edges, and, for each i ∈ V , define di to be the degree of i. From G, define a Markov chain

M with transition matrix P where Pi,j =
1

di
if (i, j) ∈ E and Pi,j = 0 otherwise. A subgraph

T ⊆ G is a tree if and only if it is connected and it contains no cycles. Spanning trees compose

a particularly important class of trees. A spanning tree T ⊆ G is a tree that contains all

vertices in V .

Define a directed graph GM , associated with M , in the usual way. A subgraph T ⊆ GM is

said to be a directed spanning tree of GM rooted at i ∈ V if and only if, for each vertex j 6= i,

there exists a unique path from j to i. In this paper, we occasionally abuse notation and refer

to trees simply by their edge sets.

The problem we discuss in this paper is that of generating a spanning tree T uniformly at

random from amongst all spanning trees of G.

1



2 Andrei Broder Algorithm

In 1989 and 1990 respectively, Andrei Broder and David Alduous independently arrived at

Algorithm 1.

Algorithm 1

1: Choose a starting vertex s arbitrarily. Set TV ← {s} and TE ← ∅.
2: Do a simple random walk starting at s. Whenever we cross an edge e = {u, v} with v 6∈ V ,

add v to TV and add e to TE.
3: Stop the random walk when TV = V . Output T = (TV , TE) as our spanning tree.

Note that the random walk stops once we’ve covered all vertices. It immediately follows

that the expected running time of this algorithm is within a constant factor of the expected

cover time, which is O(n3) in the worst case, but often O(n log n).

Before proving the correctness of the algorithm, we introduce some concepts. Let M =

X0, X1, . . . be the Markov chain with associated directed graph GM = (V,E). Let π be the

stationary distribution of GM . Recall that πi =
1

di
. Define the weight of edge (i, j) ∈ E

as wi,j = Pi,j. We can then define the weight of a directed spanning tree T = (TV , TE) as

w(T ) =
∑
e∈TE

we. Let Ti(GM) refer to the set of all directed spanning trees of GM that are

rooted at i. Let T (GM) refer to the set of all directed spanning trees of GM .

Consider a time step t in the Markov chain. Define I to be the set of states visited at or

before time step t. That is, I =
⋃

0≤i≤t

{Xi}. For each i ∈ I, let l(i, t) be the last time that state i

was visited before time t+1. Define the backward tree at time t as Bt = {(Xl(i,t), Xl(i,t)+1)| i ∈

I \ {Xt}}. Note that Bt is a tree rooted at Xt. In fact, for t ≥ C, where C is the cover time,

Bt is a spanning tree of GM .

Thus the random walk Xt generates the backward tree chain {Bt}.

Theorem 2.1. The backward tree chain has stationary distribution σ. Moreover, for any tree

T , σ(T ) =
w(T )∑

T ′∈T (GM )

w(T ′)
.

Proof. First note that every backward tree Bt for t ≤ C corresponds to a transient non-

spanning tree. This follows from the fact that for all t ≥ C, Bt is a spanning tree. On the

2



other hand, the set of all rooted directed spanning trees of GM compose a recurrent class. We

prove this below.

Let L be the set comprising all leaves in GM . Let T be a directed spanning tree of GM

rooted at vertex i. For each leaf l ∈ L, let pl,r be the unique path from l to r in T . Let pr,l be

the reverse path. Note that by construction of GM we know that pr,l must exist. Let T ′ = Bt

for some t ≥ C be a directed spanning tree rooted at some r′ that appears in the backward the

chain. We show that we can transition from T ′ to T by choosing the correct edges to travel.

If r′ 6= r then travel from r′ to r using the unique path in T . Then, for each leaf l ∈ L, take

the path pr,l followed by the path pl,r. At the end of this process, each leaf l ∈ L will have a

unique path, namely pl,r, from l to r. It directly follows that after completing the process, the

backward tree will just be T . Since this argument can be made for all directed spanning trees

T, T ′ ∈ T (GM), we conclude that the set of all spanning trees is indeed a recurrent class.

From the discussion above, it follows that the backward tree chain has a stationary distri-

bution. Call it σ. We relate π to σ as follows:

πi = lim
N→∞

1

N

∑
0≤t≤N

Pr(Xt = i) = lim
N→∞

1

N

∑
0≤t≤N

Pr(Bt is rooted at i) =
∑

T∈Ti(GM )

σ(T )

Now, consider a directed spanning tree T (i) rooted at i that appears in the backward

tree chain. A tree T ′ may only precede T (i) in the backward tree chain under the following

conditions. There must be a vertex j 6= i such that (i, j) is an edge in T ′. Also, there must

be a vertex l(j) that is the root of T ′ and consequently the last vertex prior to i on the path

from j to i in T (i). Then, T ′ = T (i) + (i, j)− (l(j), i). The stationary equations tell us:

σ(T (i)) =
∑

j∈V |(i,j)∈E

σ(T (i) + (i, j)− (l(j), i))Pl(j),i

The summation in this equation iterates over trees that may precede T (i) in the backward

tree chain, and the equation itself tells us how their stationary probabilities relate to σ(T (i)).

But the weight function w also satisfies this equality:

∑
j∈V |(i,j)∈E

w(T (i) + (i, j)− (l(j), i))Pl(j),i =
∑

j∈V |(i,j)∈E

w(T (i))Pi,j

Pl(j),i

Pl(j),i = w(T (i))

3



Therefore σ is proportional to w. That is, σ(T ) = c · w(T ) for some constant of propor-

tionality c. We now determine the value of c. We have:

1 =
∑
i∈V

πi =
∑

T∈T (GM )

σ(T ) =
∑

T∈T (GM )

c · w(T )

It’s easy to see that c =
1∑

T∈T (GM )

w(T )
. Thus σ(T ) =

w(T )∑
T ′∈T (GM )

w(T ′)
as desired.

The forward tree chain is the complement to the backward tree chain. For each vertex

i ∈ I, let f(i, t) be the first time i was visited before time t + 1. Define the forward tree at

time t as Ft = {(Xf(i,t), Xf(i,t)−1)|i ∈ I −Xt}. Note that the construction of FC is similar to

the spanning tree constructed by our algorithm. The difference is that FC contains directed

edges pointing towards the root X0 whereas in the algorithm undirected edges are added.

Theorem 2.2. If we start the markov chain M from the stationary distribution π then, for

any T ∈ T , we have Pr(FC = T ) =
w(T )∑

T ′∈T (GM )

w(T ′)
.

Proof. Let k be some positive integer. Then, since we start the Markov chain M from the

stationary distribution and M is reversible, we have the following:

Pr(X0 = xo, X1 = x1, . . . Xk = xk) =
πx0

dx0

∏
0<i<k

1

di
=
πxk

dxk

∏
0<i<k

1

di

= Pr(X0 = xk, X1 = xk−1, . . . Xk = x0)

So, Pr(Bk = T ) = Pr(Fk = T ). Using some concepts from Theorem 2.1, we have:

σ(T ) = lim
N→∞

∑
0≤t≤N

Pr(Bt = T ) = lim
N→∞

∑
0≤t≤N

Pr(Ft = T ) = Pr(Ft = T )

Applying Theorem 2.1 we prove the theorem: Pr(Ft = T ) = σ(T ) =
w(T )∑

T ′∈T (GM )

w(T ′)
.

Theorem 2.3. Algorithm 1 generates a random spanning tree.

4



Proof. In Algorithm 1 we start the random walk from an arbitrarily chosen vertex s. Therefore,

we cannot directly apply Theorem 2.2. Nevertheless, all the relevant (non-zero) probabilities

scale by the same factor. That is, if we start from an arbitrarily chosen vertex s instead of

from π, we have Pr(FC = T ) = 0 for T 6∈ Ts and Pr(FC = T ) =
w(T )∑

T ′∈Ts(GM )

w(T ′)
for T ∈ Ts.

Note that the weight w(T ) =
∏
v 6=s

1

dv
is the same for all directed spanning trees T ∈ Ts.

Thus far, we’ve shown that we’re equally likely to choose each of the directed spanning trees

in Ts as FC . But each tree T ∈ Ts rooted at s in GM corresponds to exactly one undirected

tree that may be obtained by simply ignoring edge directions. Similarly, each undirected tree

in G corresponds to exactly one directed tree T ∈ Ts, which can be obtained by orienting the

edges in the direction of s. Thus Algorithm 1 does indeed produce a random spanning tree

since, as we’ve shown earlier, Pr(FC = T ) is the same for all T ∈ Ts.

The provided proof is very similar to the one provided by Andrei Broder [2].

3 David Wilson Algorithm

In 1996, David Wilson [5] constructed a different algorithm, Algorithm 2, to generate a random

spanning tree. A root is given as input and serves as the initial tree. Then another vertex not

yet in the tree is chosen. From that vertex, a random path is created to the current tree with

loops erased as they are created. This process of creating a path between a vertex not yet

in the tree to the tree is repeated until all vertices are part of the tree. The algorithm itself

ensures that there are no loops in the tree and that the tree is indeed a spanning tree since it

has no loops and it contains all n vertices.

The function randomSuccessor is used to pick a new vertex; randomSuccessor(u) chooses

the next vertex v ∈ N(u) uniformly at random. Note that the running time of Algorithm 2 is

linear in the number of times randomSuccessor is called.

To assist in examining Algorithm 2 we consider an equivalent cycle-popping procedure.

But before we get to that, we must understand what a stack is. One may think of a stack of

cards or a stack of coins. A stack in the context of this paper can be thought of in much the

same way. A stack is simply a data structure that has two basic operations, push and pop.

5



Algorithm 2 (Input: root r ∈ V )

1: ∀i 6= r, inTree(i)← false
2: next(r)← nil
3: inTree(r)← true.
4: for i← 1 to n do
5: u← i
6: while ¬inTree(u) do
7: next(u)← randomSuccessor(u)
8: u← next(u)
9: end while

10: u← i
11: while ¬inTree(u) do
12: inTree(u)← true
13: u← next(u)
14: end while
15: end for
16: Output next.

Pushing an element onto the stack means placing the element at the top of the stack. Popping

an element from the stack means removing the top element from the stack.

We associate a stack Su with each vertex u ∈ V . The root vertex r has stack Sr = ∅.

Every vertex u 6= r has an infinite stack associated with it. The infinite stack is constructed

by choosing a neighbor of u uniformly at random from all neighbors, pushing it onto the

stack, and repeating indefinitely. That is, if Su,i denotes the ith element in the stack, we have

Pr[Su,i = v] = Pr[randomSuccessor(u) = v] for all u 6= r.

In the algorithm, GS denotes the graph induced by the stacks. In particular, if we let top(u)

denote the vertex at the top of stack Su then GS = (V,ES) where ES = {(u, top(u))|u 6= r}.

Though Gs always contains exactly n − 1 edges, it needn’t be a tree; indeed, it may contain

cycles. If this is the case, we choose a cycle C and pop the stacks corresponding to vertices in

C. This is what we mean by popping a cycle. If we ever reach a stage where Gs has no cycles,

we pop it off the stack.

We color the stack elements with an infinite set of colors. For a given vertex u, stack

element Su,i has color i. These colors produce a coloring on the cycles and the graph GS.

Theorem 3.1. The choices of which cycles to pop have no influence on the final set of stacks

generated at output. That is, for a given set of stacks, Algorithm 3 either (a) never terminates

6



Algorithm 3 (Input: root r ∈ V , stacks Su associated with each vertex u ∈ V )

1: while GS has a cycle do
2: Choose a cycle C in GS at random and pop it
3: end while
4: Output GS

for each set of choices or (b) outputs the same colored tree for each set of choices.

Proof. Let C be a colored cycle that is popped in one execution of the algorithm. Let

C1, C2, . . . Ck be the sequence of colored cycles popped before C is popped. Now, suppose

that the first cycle we pop is C ′, not C1. Will C still be popped? If C ′ shares no vertices with

C1, C2, . . . , Ck, then the answer is clearly yes since either C = C ′ or C shares no vertices with

C ′. Else, C shares a vertex with at least one cycle in {Ci|1 ≤ i ≤ k}. Let Cl be the first such

cycle. But then C ′ has the same colors as Cl. So, popping Cl, C1, C2, . . . , Cl−1, Cl+1, . . . , Ck

will still allow for C being popped. And it will be. This idea can easily be extended for other

arrangements as well.

From the discussion above, it’s evident that we’ll pop the same cycles. Therefore, if the

algorithm does not terminate in one execution due to an infinite number of colored cycles then

it will not terminate in any execution. And if we produce a colored tree T in one execution of

the algorithm, we’ll produce the same colored tree T in all executions of the algorithm.

Theorem 3.2. Algorithm 2 returns a random spanning tree.

Proof. Consider the probability that the stacks induce a particular tree T and set of cycles C.

The probability of producing tree T can be factored into two terms, w(T ) which depends solely

on T , and w(C), a term that is independent of T . Thus, for all trees T ∈ Tr, Pr(T ) = c ·w(T )

for a fixed constant c. Hence we’re equally likely to produce any of the spanning trees and the

theorem follows.

Define Eiτj to be the expected time to go from vertex i to j. Define κ(i, j) = Eiτj + Ejτi

to be the commute time from i to j. Define τ =
∑
u∈V

π(u)π(r)κ(u, r) be the mean hitting time.

We now determine the running time.

7



Theorem 3.3. If we run Algorithm 2 as is, then it will call randomSuccesor
∑
u∈V

π(u)κ(u, r)

times in expectation. If we instead choose the starting vertex s according to the distribution π

the expected number of calls to randomSuccesor is 2τ and the expected running time is O(τ).

Proof. Consider a vertex u. The probability that a random walk starting at u visits v before

returning to u is
1

π(u)κ(u, r)
. This is shown in [4]. So, randomSuccessor(u) will be called

π(u)κ(u, r) times in expectation. Summing over all vertex u ∈ V , we find that Algorithm 2

calls randomSuccessor
∑
u∈V

π(u)κ(u, r) times. This proves the first statement of the theorem.

The second statement follows by the same logic.

4 Conclusion

We analyzed two algorithms for generating random spanning trees. However, each algorithm

can be extended to tackle other problems which haven’t been discussed here. Readers who are

so inclined may refer to the appropriate references. Additionally, an interesting applicational

problem of biological sequence shuffling is studied in Kandel et al [3].

References

[1] David J Aldous. The random walk construction of uniform spanning trees and uniform

labelled trees. SIAM Journal on Discrete Mathematics, 3(4):450–465, 1990.

[2] Andrei Broder. Generating random spanning trees. In Foundations of Computer Science,

1989., 30th Annual Symposium on, pages 442–447. IEEE, 1989.

[3] D Kandel, Yossi Matias, Ron Unger, and Peter Winkler. Shuffling biological sequences.

Discrete Applied Mathematics, 71(1):171–185, 1996.

[4] László Lovász. Random walks on graphs: A survey. Combinatorics, Paul erdos is eighty,

2(1):1–46, 1993.

[5] David Bruce Wilson. Generating random spanning trees more quickly than the cover time.

In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages

296–303. ACM, 1996.

8


	Introduction
	Andrei Broder Algorithm
	David Wilson Algorithm
	Conclusion

