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Abstract

Pólya’s recurrence theorem states: a simple random walk on a d-dimensional lattice is recurrent for
d = 1, 2 and transient for d > 2. In this paper we discuss proof for this theorem by formulating the
problem as an electric circuit problem and using Rayleigh’s short-cut method from classical theory of
electricity.

1 Introduction

The recurrence problem first occurred to Pólya in early 1900s when he was taking a walk in a park and
he crossed the same couple quite often in that park, even though it seemed to him that they both were
taking random walks [4]. George Pólya investigated this problem on infinite graphs and presented his famous
recurrence theorem in 1921 [3]. Peter Doyle [1], in his dissertation, showed how to apply Rayleigh’s short-cut
method from classical theory of electricity to prove Pólya’s recurrence theorem. In this paper we discuss
Doyle’s proof for Pólya’s theorem.

1.1 Problem

Figure 1 shows the type of infinite graphs that Pólya considered (we will refer to them as ‘lattices’). Pólya’s
recurrence theorem states that a random walk is recurrent in 1 and 2-dimensional lattices and it is transient
for lattices with more than 2 dimension. Pólya defined a random walk as recurrent if the walker passes
through every single point on a lattice with probability one, otherwise the walk is transient. Doyle defined a
random walk as recurrent if the walker returns to its starting point with probability one, and if there is a
positive probability that the walker may not return to its starting point then the random walk is considered
transient. As Doyle notes, these two recurrent walk definitions are essentially same, because if a walk is
recurrent as per Pólya’s definition then it is recurrent as per Doyle’s definition and also the other way around.

In this paper we use Doyle’s definition of recurrence as it helps us frame our recurrence problem as an
electric circuit problem. Formalizing Doyle’s recurrence definition: if we denote the probability that the
walker never returns to its starting point by pescape, then we can say a walk is recurrent if pescape = 0 and a
walk is transient if pescape > 0.

1.2 Intuition

On a 1-D lattice after a random walker takes the first step he has a probability of 1/2 of returning to its
starting point in second step. Whereas in a 2-D lattice, the probability that he will return to the starting
point in second step is 1/4, and for 3-D dimension it is 1/6. This is because the number of paths going away
from the starting point that the walker can take increase as dimension of the lattice increases. Thus, we
can see that as the dimension of a lattice increases it becomes harder for a random walker to return to its
starting point. It is more intuitive if we use Pólya’s recurrence definition: as dimension increases the number
of points on the lattice increase, and naturally it becomes harder for a walker to cover every single point. It
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Figure 1: Infinite lattices in 1, 2, and 3 dimension

is, however, not intuitive as to why the walk becomes transient for d > 2 (and say, not for d > 4). We discuss
this cutoff in Section 4.

2 Preliminaries

For our proof we need a relation between effective resistance and escape probability. We can represent a
simple random walk on a graph shown in Figure 2a) that starts at a and ends in b with an electric circuit
shown in Figure 2b) where each edge has a 1-Ω resistor and a 1-V battery is applied between the starting
point and the end points of the walk (point a and b in the Figure).

When we represent a simple random walk as an electric circuit with 1-V battery we can interpret the
voltages at each point as the probability that the walker starting at that point reaches a point of 1-V before
a point of 0-V. For example, in the above Figure, Vc, the voltage at a point c represents the probability that
a walker at point c will reach point a before b. We will not go into details of this proof here; we point the
reader to Doyle and Snell [2] for details on voltage interpretation of probabilities.

We can express pescape, the probability the walker starting at a reaches b as,

pescape = 1− preturn = 1−
∑
x

Paxpx (1)

where preturn is the probability that walker starting at a returns to a, which is equal to the sum of probabilities
that he reaches a before b from x (px) given that he has reached x from a (Pax).

We know that the effective resistance between two points is the ratio of total voltage between them and
the total current flowing between them, i.e., the effective resistance between a and b is Reff = Vab/Iab. In
our circuit all the current flows out of a and into b, thus Iab = Ia, the total current flowing out of a.

Ia =
∑
x

(Va − Vx)Cax = Va

∑
x

Cax −
Ca

Ca

∑
x

CaxVx = Ca − Ca

∑
x

Cax

Ca
Vx = Ca(1−

∑
x

PaxVx)

⇒ Ia = Capescape Using px = Vx and Equation 1

(2)

where Cax is the conductance of the edge ax, and Ca is total conductance from a (Ca =
∑

x Cax). Thus, we
have:

Reff = Vab/Iab =
Vab

Capescape

pescape =
Vab

CaReff

(3)
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Figure 2: a) Simple random that starts in a and ends in x, b) Electric circuit representing simple random
walk in a); each resistor is 1-Ω. c) G(3) obtained from a 2-D lattice.

3 Proof

We first convert an infinite lattice to a finite graph G(r) of radius r as follows: we mark the starting point
(of a random walk) on Zd as the origin 0 and throw away all the edges in the lattice that are more than r
edges away (by shortest path) from 0. The left-over graph is G(r) and we denote all the extreme points of the
graph (i.e., points that are r edges away from 0, again, by shortest path) as S(r). As we increase r to infinity,
G(r) becomes an infinite graph. A random walk on G(r) begins at 0 and end when the walker reaches a point
in S(r). Figure 2c shows G(r) on Z2 for r = 3.

We denote p
(r)
escape as the escape probability of G(r), i.e., the probability that a random walk on G(r),

starting at 0 (we will refer to this as the ‘origin’), reaches S(r) before returning to 0. And we denote

pescape = limr→∞ p
(r)
escape as the escape probability of the infinite graph.

We can convert G(r) to an equivalent electric circuit as described in Section 2 and attaching a 1-V battery
with the origin at 1V and all points in S(r) at 0V. For such an electric circuit from Equation 3 we have:

p(r)escape =
1

CaR
(r)
eff

=
1

2dR
(r)
eff

(4)

where Ca is the total conductance at origin and it equal to the degree of origin, 2d. Taking limit r →∞ on
both sides we get the relation between escape probability for an infinite graph and effective resistance of an
infinite circuit.

pescape =
1

2dReff
(5)

From this equation we have: pescape = 0 if and only if Reff =∞. Thus, it suffices to show that if Reff =∞
for an infinite lattice, a random walk on it is recurrent.

3.1 1-D and 2-D

An infinite 1-D lattice circuit is formed by attaching resisters in series forming an infinite chain. It is easy
to see that for such a circuit the effective resistance to infinity is infinity. This was easy to see because of
rotational symmetric. 2-D (and higher dimension) lattices, however, lack rotational symmetric. So it is not
so obvious to deduce whether Reff is infinity for d > 2.

For 2-D lattice we use Rayleigh’s shorting law, which says that if we short two points in an electric circuit
then the effective resistance between two given points on that circuit can only decrease. We short the edges
for a 2-D lattice as shown in Figure 3a. Now we can easily compute the resistance to infinity as follows.
Resistors between two levels (marked 0, 1, 2, 3, ... in the figure) are in parallel and would give one resistor of
value 1

8n+4Ω where n is the value of the smaller level. Thus, the resistance to infinity is
∑∞

n=0
1

8n+4 = ∞.
Since shorting can only decrease the effective resistance, we conclude that actual resistance to infinity of a
2-D lattice is ∞.
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Figure 3: a) Shorting along bold edges in a 2D lattice. b) NT3

3.2 3-D

Recall, we need to prove that a walk is transient on 3D lattice, i.e., pescape > 0⇒ Reff <∞. Following our
approach for 2D we need to obtain a nice graph from 3D lattice that we can analyze and compute Reff .
We cannot use Rayleigh’s shorting law because we have to prove an upper bound on Reff . Instead we use
Rayleigh’s cutting law, which states that if we cut an edge in an electric circuit, then the effective resistance
between two given points in that circuit can only increase. We cut edges in 3D lattice to get a nice graph,
and if we get this Reff of our graph turns out to be less than infinity then we are have our proof (because
the Reff of the original lattice can only be less than the Reff of our graph, by Rayleigh’s cutting law).

Trees are easy to analyze and a full binary tree has resistance to infinity, Reff = 1. But unfortunately we
cannot obtain a binary tree from a 3D lattice (or in other words we cannot fit a binary tree in a 3D lattice)
because binary trees grow too fast. If we consider a ‘ball’ of radius r, in a 3D lattice the total number of
nodes inside such a ball is rd (roughly speaking) whereas for a tree this number is 2r+1 − 1. If we consider
how quickly a 3D lattice and a tree grow, roughly speaking, in a 3D lattice every time the radius becomes
doubles the size of the ball (surface area of ball) in lattice quadruples, whereas for a tree every time radius
increases by 1 the size of sphere doubles. So we need to modify the tree so that it grows as slowly as the 3D
lattice. We modify the tree as shown in Figure 3b. Instead of dividing into branches at each edge, we allow
branching in the tree when the radius become double, and since in 3D lattice size of sphere quadruples, we
make four branches. We call this tree as NT3. Computing Reff for NT3 is easy. By symmetry the voltage at
each level in the tree is same, so we can short those points and we get the resistance to infinity for NT3 as
Reff = 1/2.

When we try embed NT3 into a 3D lattice, the resulting tree that we actually embed turns out to be of
NT2.5849, i.e., of dimension 2.5849. We say it is of dimension 2.5849 because the number of nodes in a ball of
radius r for this tree is proportional to r2.5849 (for a 3D ball of radius r the number of nodes inside it would
be proportional to r3). The Reff for NT2.5849 is 1. So what we have now is a graph obtained from a 3D
lattice whose resistance to infinity, which is finite, is equal to or larger than that of 3D lattice. Thus, we can
say that resistance to infinity for a infinite 3D lattice is finite, and hence a walk on a 3D lattice is transient.

For details on how to embed a tree in a lattice and details on computing resistance to infinity for tree we
refer readers to Doyle and Snell [2].
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4 Discussion

4.1 Other proofs

We will briefly mention some other existing proofs for Pólya’s theorem. The classical proof uses the fact that
if a walk is recurrent the walker will keep returning to the origin (his starting point) and hence the expected
number of times that walker will return to the origin is infinite for a recurrent walk and less than infinity for
a transient walk. The proof concludes by showing that this expected number of returns is indeed infinite for
walks in 1 and 2-D, and less than infinity for walk in 3-D. One must see this classical proof to appreciate the
elegance of the Doyle’s proof using electric circuits.

Tetali [5] formulates the problem into an electric circuit problem, but slightly differently. We applied
a voltage of 1V to our circuit, whereas Tetali passes a flow of 1-amp current in the circuit. This subtle
difference only changes how you relate effective resistance to a recurrent walk (i.e., how you show that a walk
is recurrent if effective resistance is infinity). After that the proof for Pólya’s theorem would be same.

Doyle and Snell [2] give another proof for Pólya’s theorem using flows. The idea is to inject a flow at
the origin of the lattice and to determine if the flow to infinity has a finite dissipation. If flow has finite
dissipation the walk on the lattice is transient.

4.2 Why d > 2?

Although this is not a serious question, a reader may wonder why does a walk become transient above 2
dimension and not after 4 dimension, for example. Unfortunately there is not good answer to this question.
Doyle’s [1] explanation may satisfy some readers: if we convert this problem to a continuous problem by
replacing our d-dimension resistor lattice with a resistive medium filling and the try to compute the effective
resistance to infinity of this medium we would get an expression similar to: R∞

∫∞
a

dr
rd−1 , and the cutoff

for this integral if d > 2. This justification does not really answer the question. We think a more intuitive
answer remains to be found for this question to satisfy readers’ curiosity.

4.3 Connecting dots

We mentioned that Pólya thought about the recurrence problem because he was meeting the same couple
often during his random walk. A reader may wonder how does this theorem answer that question. Using
Pólya’s theorem one can show that the two walkers taking random walks on a 2D lattice would certainly
meet. Here is a hint for the readers: the two random walks can be combined into one random walk with two
steps each time and when the combined random walk crosses to its origin the two walkers meet.
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