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Abstract

While infinite graphs generally have infinite expected hitting times, we prove that
the hitting times become finite if we allow a random walk to restart at the source vertex
at any point in the walk. We then compute explicitly the expected hitting time with
restarts for Cayley trees and the hypercube (including a small correction to the original
paper from which this material is drawn.) Finally we state a theorem regarding these
hitting times on the integer lattice of dimension d, and provide a surprisingly accurate
heuristic argument for d = 2.

1 Introduction

A natural question when considering a random walk on a graph is to compute the expected

time to get from one vertex of the graph to another. This quantity, the hitting time, has been

well studied for finite graphs. It is not as useful a statistic, however, for infinite graphs, as

the hitting time between vertices is generally infinite. For example on the infinite line, Z the

expected time to get from 0 to 1 is infinite. (The hitting time between vertices in an infinite

graph may be finite in one direction if the graph obtained by removing the target vertex leaves

the source vertex isolated in a finite component of the graph.)

If, however, we allow the random walk to “restart” at the source vertex we might expect the

“hitting time with restarts” to be finite, as it eliminates the possibility a walk will wander to

far off “towards inifinity.” We can make this idea rigorous, so long as our graph is reasonable:

Theorem 1.1. In any locally finite graph, the expected hitting time from any vertex s to

another vertex t is finite.

Proof. Let k be the length of a shortest path from s to t. Since the graph is locally finite

there are a finite number of vertices with distance less than k from s. Let d be the maximum
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degree over all such vertices. Now use the simple (but far from optimal) restart rule: Take k

steps from s, then restart if not at t. The probability of selecting the path from s to t above

is at least
(
1
d

)k
. Treating this as a Bernoulli trial, we see that the expected hitting time with

restarts is at most dk.

It is shown in[1] that the hitting time with restarts is equal to a quantity called the grade

γ(s, t), which can also be defined in greater generality, allowing different costs when moving

at different places in the graph. See Seth Harris’ paper for more on this subject. The theorem

above is proven in much greater generality in [1], Theorem 9.1. In what follows we demonstrate

three examples where we can explicitly compute the expected hitting time with restarts.

2 The n-dimensional hypercube

We start by considering a finite example. Let Qn denote the n−dimensional hypercube, where

we represent each vertex by a binary sequence u = (u1, u2, · · ·un). Vertices are connected

if and only if their binary sequences differ in exactly one position. By the symmetry of the

hypercube, we can always assume the target vertex is the origin. Now, define the j−th level

of Qn to be all vertices whose binary representation contains exactly j 1’s. We would like to

find the expected hitting time, allowing restarts, from a vertex in level k to the origin.

Again exploiting the symmetry of the hypercube, we see that any time our random walk

takes us to level k + 1 we are better off restarting at our original vertex. We can also use the

symmetry to simplify the idea of restarting: Since some rotation of the hypecube fixes the

origin and interchanges any two vertices in the same level, we can restart any time we get to

level k+ 1 by simply returning to our prior vertex in level k rather than actually returning to

our initial vertex s without changing the problem.

Therefore, we construct the truncated hypercubeQn
k by removing all vertices of level greater

than k from Qn and replace each of the n− k edges from each vertex of level k to level k + 1

with a loop. By the discussion above, a simple random walk on this graph will be equivalent

to a random walk with restarts on Qn.

Let Tj denote the expected time to get from level j to level j − 1 in Qn
k . So the expected

hitting time with restarts (equivalently the grade) γ(k, 0) =
∑k

j=1 Tj. Getting from level k to
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level k−1 requires simply not choosing one of the loops out of level k, and hence as a bernouli

trial has expected time Tk = n
k
.

Now for arbitrary 0 < j < k, we must take at least one step, which will either take us to

level j − 1 or j + 1. If we step to j − 1, we are done, but if we go to j + 1, we must first get

back to level j, and then on to level j − 1. This happens with probability n−j
n

, which gives

us the recurrence: Tj = 1 + n−j
n

(Tj + Tj+1). The paper, [1], from which this example comes,

makes the assertion: It is straightforward to verify that

Tj =
1(

n−1
n−j

) n∑
i=n−j

(
n

i

)
.

Plugging this expression into the recurrence to verify we obtain

j

n

(
1(

n−1
n−j

) n∑
i=n−j

(
n

i

))
= 1 +

n− j
n

(
1(

n−1
n−j−1

) n∑
i=n−j−1

(
n

i

))

j

(
n∑

i=n−j

(
n

i

))
= n

(
n− 1

n− j

)
+ (n− j)

(
j − 1

n− j

n∑
i=n−j−1

(
n

i

))
n∑

i=n−j

(
n

i

)
= j

(
n

n− j

)
+ (j − 1)

(
n

n− j − 1

)
j−1∑
i=0

(
n
i

)
= (j − 1)

(
n

n−j

)
+ (j − 1)

(
n

n−j−1

)
= (j − 1)

(
n+1

n−j+1

)
.

A closed form expression for the sum of the first j binomial coefficients on level n of

Pascal’s triangle! Unfortunately, no such closed form expression exists-something has gone

wrong. (Consider this a reminder to verify assertions in papers, even if the paper says that

it is easy to do so!) We derive the correct solution by writing out the first few terms and

recognizing the pattern:

Tk−1 = n
k−1 + n−k+1

k−1

(
n
k

)
Tk−2 = n

k−2 + n−k+2
k−2

(
n

k−1

)
+ n−k+2

k−2

(
n−k+1
k−1

) (
n
k

)
...

Tj = n

k−j∑
i=0

(n−j)(n−j−1)···(n−j−i+1)
(j)(j+1)···(j+i)

=
n

j

k−j∑
i=0

(n−j)!j!
(n−(j+i))!(j+i)!

=
n

j

k−j∑
i=0

( n
j+i)
(n
j)

γ(k, 0) =
k∑

j=0

Tj =
k∑

j=0

n

j
(
n
j

) k−j∑
i=0

(
n

j+i

)

3



3 Cayley Trees

We now consider an easy, infinite example, Cayley trees. The d-regular Cayley tree, T d is

the unique, infinite tree in which each vertex has degree d. Like the hypercube, this graph is

completely symmetric, so the target vertex can be assumed to be the “root.” Also, analogously,

our restart rule will again be to restart anytime we are further from the root than when we

started.

Applying the same analysis as in the hypercube, we see that the hitting time with restarts

from level k to the root, γ(k, 0), is the hitting time on the truncated tree T d
k , which contains

the first k levels of T d, and where each vertex in level k is given d− 1 loops. Now, we know:

Theorem 3.1. In a finite tree (possibly with some loops) the length of any whirling tour from

v to t is the expected hitting time from v to t. (see Andrew Hannigan’s paper for the proof and

relevent definitons.)

In light of this theorem, it suffices to compute a whirling tour on T d
k . Going from level

j+ 1 to an adjacent vertex u on level j on a such a whirling tour requires itself a whirling tour

on the subgraph T d
k−j rooted at u. Let Wj be the length of such a tour.

T d
k−j has

∑k−j−1
i=0 (d − 1)i edges and (d − 1)k−j loops. Each edge is used twice (except for

the final edge) and each loop once, so

Wj = 2

(
k−j−1∑
i=0

(d− 1)i

)
− 1 + (d− 1)k−j = (d−1)k−j−1

d−2 − 1 + (d− 1)k−j.

Summing this over all levels, we obtain

γ(k, 0) =
k−1∑
i=0

Wi =
k−1∑
i=0

(
(d−1)k−j−1

d−2 − 1 + (d− 1)k−j
)

= (d−1)k+2−(d−1)(d+(d−2)k−1)
(d−2)2 (d > 2).

4 The infinite grid, Zd

Notice that the above solution works only when d > 2. In the case d = 2 we just have a walk

on the integers, Z. It is left as an exercise to the reader to show that the expected time to get
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from an integer x to the origin is γ(x, 0) = |x|(|x|+ 1). We consider the case d > 2.

We still have translational symmetry on the grid Zd, so we can assume the target is the

origin, however we don’t have complete (rotational) symmetry, so the hitting time cannot be

dependent solely on the number of steps from the origin (the l1 norm.) We can however get

an asymptotic estimate:

Theorem 4.1 (Janson and Peres, 2010[2]). For a random walk with restarts on Zd,

γ(x, 0) = 2|x|2 log |x|+ (2γe + 3 log(2)− 1)|x|2 +O(|x|log|x|)

when d = 2, where |x| is the Euclidean distance from the origin and γe is the Euler-Mascheroni

Constant, γe := limN→∞
∑N

i=1− logN . For d ≥ 3.

γ(x, 0) =
ωd

pd
|x|d +O(|x|d−1)

where ωd is the volume of the unit ball in Rd, and pd probability that a random walk in Zd

never returns to 0.

The proof is complicated, and involves submartingales and the optional sampling theorem

to bound the grade using bounds for the local variance of a harmonic function, and various

results on the potential kernel (for Z2.)

Instead, we present a heuristic argument for the case d = 2. Define as ulual the jth level

of the grid to be the points j steps from the origin, and bserve that the 2d grid is nearly

symmetric, except on the axes. Each non-axis point has 2 edges to level j + 1 and 2 edges to

j − 1. There are a total of 16j edges, 8j + 4 to level j + 1, 8j − 4 to level j − 1

So, we ignore the asymmetry, and blindly apply the method we’ve used before to calculate

γ(k, 0) from an “arbitrary” point k steps from the origin. Truncate the grid at level k as usual,

replacing each outgoing edge with a loop, and let Sj be the expected time to get from level j

to level j − 1.

Now, applying the same analysis as in the hypercube we find that Sk = 16k
8k−4 ≈ 2 and

Sj = 1 + 8j+4
16j

(Sj + Sj+1)

It is straightforward to verify that: (Remember the lesson above?)

Sj = 2

(
k2 − j2 + k + j − 1

2j − 1

)
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So,

γ(k, 0) =
k∑

j=1

Sj =
k∑

j=1

2

(
k2 − j2 + k + j − 1

2j − 1

)

≈ 2

∫ k

j=1

(
k2 − j2 + k + j − 1

2j − 1

)
dj

=
1

4
((4k(k + 1)− 3) log(2k − 1)− 2(k − 1)k)

= k2 log(2k)− 1

2
k2 +O(k log k).

So we see the |x|2 log |x| and |x|2 terms appearing as in the theorem. Our heuristic is

actually better than it first appears, however. As a final observation, note that as long as we

stay away from the axes, our symmetry assumption isn’t so bad. Take x = (a, a) to be a point

on the diagonal and recall that for such an x (at level k) k = ||x||1 =
√

2|x|. Plugging this in

our estimate, we find that

k2 log(2k)− 1

2
k2 →(

√
2|x|)2 log(2(

√
2|x|))− 1

2
(
√

2|x|)2

= 2|x|2(log |x|+ log(23/2))− |x|2

= 2|x|2 log |x|+ (3 log 2− 1)|x|2.

This agrees exactly with the result from the theorem, with the exception of the factor

of 2γe. But, we approximated a sum with an integral, and obtained a log, so recalling the

definition of γe, it would make sense that replacing the log |x| with a log |x| + γe would give

us a better assymptotic estimate. Doing so gives us

= 2|x|2 log |x|+ (2γe + 3 log 2− 1)|x|2,

the same expression given in the theorem above.
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