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Abstract

Chandra et al. have shown that the effective resistance, Ruv between two nodes, u
and v of an electrical network is directly proportional to the commute time, Cuv of these
two vertices on an equivalent undirected graph with edges being replaced by resistors.
The constant of proportionality varies depending on the resistance and cost of each edge.
Two proofs are given to show that Cuv = 2m.Ruv where m is the total number of edges.

1 Introduction

Doyle and Snell [1] showed that a random walk on an undirected graph, G with vertices, V

and edges, E are related to voltages in an electrical network. This relation becomes clear if

each edge is replaced by a resistor with resistance, rxy > 0. It can, then be shown that the

probability of reaching y from vertex x before reaching some vertex z, Px is the voltage at x

with respect to ground. This was proved by showing that both Px and voltage at x with respect

to ground are harmonic functions satisfying the same boundary conditions. As a reminder, a

random walk would start at a vertex and would choose where to go next by selecting a vertex

uniformly at random.

The hitting time, Huv is defined to be the expected number of steps a random walk would

take starting at vertex u and first arriving at v. Commute time, Cuv is then defined to be Cuv

= Huv + Hvu which is the expected number of steps for a random walk starting at u to hit

v and to hit u back. Section 4 would show in detail the proofs given in [2] about how Cuv is

related to the effective resistance Ruv.

In general, the effective resistance, Rxy is defined to be the voltage measured between x

and y with a unit current sent into node x and one unit of current removed from node y.
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2 Goal of this Paper

The aim is to provide two proofs from [2] of Theorem 2.1.

Theorem 2.1. For any two vertices, u and v in an undirected connected graph, G = {V,E}

with |V | = n vertices and |E| = m edges, where each edge has unit resistance and unit cost,

then Cuv= 2mRuv.

3 Preliminaries

The voltage across a branch xy is denoted by ψxy. Ixy is the current flowing from x to y. If

this current is positive the x terminal would be more positive than the y terminal. The three

laws that we need for the first proof are:

• Ohm’s Law states that the voltage across a resistor is proportional to the current across

it.

• Kirchhoff’s Voltage Law states that the voltage around a closed loop is zero. For example,

consider the loop, L, in Figure 1. The following is true: ψDC + ψCE + ψFE + ψFD = 0.

• Kirchhoff’s Current Law states that the current entering a node is equal to the current

going out. For example, in Figure 1, at node C, IDC + IAC = ICE

Figure 1: Illustrating Kirchhoff’s Voltage and Current Laws

Assume that G is a connected graph with each edge having a resistance and a cost, denoted

by rxy and fxy respectively. Conductance of each edge, (x, y), is defined to be Cxy =
1

rxy
.

After a random walk the probability of transitioning from vertex, x to another neighboring

one, y is given by Pxy =
Cxy

Cx

where Cx =
∑

y Cxy. Finally, N(x) denotes the neighbors of x.
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4 Proofs

The first proof is by Chandra et al. [2] and uses concepts borrowed from electrical network.

The second proof is also from [2].

Proof. 1

Input d(x) units of current into each node x. This means there would be 2m units

of current flowing which would be removed from node v (Kirchhoff’s Current Law)

(refer to Figure 2).

Figure 2: d(x) units of current flowing to each
node with 2m units removed from node v

Applying Kirchhoff’s Voltage Law we get that ψxy = ψxv − ψyv since ψvv = 0. By

Ohm’s law the current flowing across an edge, (x, y) ∈ E, Ixy is given by equation 1.

Ixy =
ψxv − ψyv

rxy
= ψxv − ψyv (1)

Current flowing from any vertex, u where u 6= v to vertex x, Iux, can be computed

by applying Kirchhoff’s Current Law and is shown in equation 2.

∑
x∈N(x)

Iux = d(u) (2)
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Combining equations (1) and (2) and with proper substitution of subscripts, equa-

tion 3 results.

d(u) =
∑

x∈N(u)

(ψuv − ψxv) (3)

=
∑

x∈N(u)

ψuv −
∑

x∈N(u)

ψxv (4)

= d(u).ψuv −
∑

x∈N(u)

ψxv (5)

Rearranging equation 5,

ψuv = 1 +
1

d(u)

∑
x∈N(u)

ψxv (6)

But hitting time, Huv,

Huv = 1 +
1

d(u)

∑
x∈N(u)

Hxv (7)

And, equation (6) has the same series of linear equations as equation (7) with dif-

ferent parameters. For, equation (8) to be true there must exist a unique solution.

This can be proved as follows. Let’s assume that there are in fact two solutions,

µu and µ̄u where one would be larger. Now, if we propagate this to its neighbors,

then they would also have one value larger than the other, but at u = v we get Hvv

= ψvv = 0 which is a contradiction. So, equation 8 holds.

Huv = ψuv (8)

Now, for convenience, let’s fix a vertex, u and instead of removing 2m units of

current from v remove it from u as shown in Figure 3.

Add the negative of the flows in Figure 3 to those in Figure 2 and, let’s denote the

resulting flow by F . Then,

∀x, F = ψxv − ψxu (9)
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Figure 3: 2m units of current flowing out of u instead of node v

Equation 9 shows that there are 2m units of current entering u and leaving v. Note

that the internal flows cancel each other. From the definition of Cuv,

Cuv = Huv +Hvu (10)

= ψuv + ψvu (11)

= (ψuv − ψuu)− (ψvv − ψvu) (12)

= ψuv + ψvu (13)

Equation 12 results from substituting x for u and then x for v in equation 9.

Now, Ruv is defined for 1 unit flowing from u to v, and here we have 2m units, so

by Ohm’s Law, Ruv =
ψuv + ψvu

2m
.

And,

Cuv = 2m.Ruv (14)

Proof. 2

Consider a u−to−u excursion with time T as shown in Figure 4. Then the expected time

of hitting any node x, E[Nx] is equal to the expected time of T , E[T ] times the stationary

probabiblity of being at x and is given by equation 15. This is proven in [3] which explains

that each return to node u is a renewal i.e. each time a node u is re-visited it’s as if the

random walk starts over again. Consequently, it can be proven that the proportion of time at

a given node, x is equal to the ratio of the expected time of visiting, x in a u−to−u cycle and

the expected time of that cycle.
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E[Nx] = E[T ].πx (15)

Since every edge has a unit cost and a unit resistance, we get πu = du
2m

for x = u. Now, we

Figure 4: a u−to−u excursion where we are interested
in only the first time node v is hit

let T be the time of first return to u after hitting node v. But, by definition this is also Cuv.

So, equations 16 and 17 follow.

E[Nu] = E[T ].
du
2m

(16)

= Cuv.
du
2m

(17)

E[Nu] is the expected time that we do a u−to−u excursion until node v is hit. Remember

that we do return to node u after hitting v. Now, the probability of hitting v before returning

to u is just the probability of escape, Pesc and by definition is given by equation 18.

Pesc =
1

du.Ruv

(18)

Let R be a geometric variable which denotes the number of trials until a success happens in a

sequence of independent bernouilli trials. Here, a success is the trial where during a random

walk from u, we hit v. This is shown in Figure 5. Failures occur when node v is not hit.

Figure 5: a u−to−u excursion where failures and success are marked

Denoting the probability of success by p then,

E[R] =
1

p
= du.Ruv (19)
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And, by definition E[R] = E[Nu].

Cuv.
du
2m

= du.Ruv (20)

Rearranging equation 20,

Cuv = 2m.Ruv (21)

5 A Generic Equation

Theorem 2.1 is only valid if each of the edge, (x, y) ∈ E has resistance, rxy of one ohm and

a cost, fxy of one. A general equation can be proven by injecting a current of
∑

y∈V
fxy
rxy

into

each node x and gives Theorem 5.1 which is taken from [2].

Theorem 5.1. For any two vertices, u, v ∈ G, Cuv =
∑

(x,y)∈V×V
fxy
rxy

.Ruv

Table 1 gives a summary of the commute time for different costs and resistances of each

edge.

Table 1: Commute Time -
Varying Cost and Resistance

fxy rxy Cuv Definition

1 1 2m.Ruv m = number of edges
1 rxy C.Ruv C =

∑
(x,y)∈V×V Cxy

r2xy rxy r.Ruv r =
∑

(x,y)∈V×V rxy

6 Conclusion

In this paper two proofs of Chandra’s Theorem on commute time have been given and a more

generic equation has been stated which has a similar proof to Proof 1.
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