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Abstract

Let G = (m,n) be an undirected graph with m edges and n vertices. For a random
walk on G it is known that the time to cover all its edges is bounded by O(mn) [2]. In
a later work the bound O(m2) [3] is proved, which holds even for graphs with weighted
edges. Here, we briefly discuss these results along with their proofs.

1 Introduction

The work [2] proves a bound O(mn) for random walks on general graphs, and a bound O(n2)

for regular graphs.

The work [3] proves that the bound O(m2) holds even for graphs with weighted edges; then

m is the total weight of all the edges in the graph, instead of their number. Specifically, the

authors prove that the expected time to cover each edge in just one direction is at most 2m2,

while the expected time to cover each edge in both directions is at most 3m2. In order to

prove both results, they bound the expected edge cover time of random walks that start and

conclude at the same vertex.

2 Preliminaries

A random walk on a connected, undirected graph without weights is a walk that starts at a

vertex x of the graph and at every time step chooses one of the neighbours of the current

vertex with equal probability and the time to traverse every edge is one. On the other hand,

on graphs with weights l(e) on edges the time to traverse an edge of length l is l2 and the
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transition probability from a vertex x to its neighbour y is 1/l(x,y)
Σz◦x1/l(x,y)

, where z ◦ x denotes the

vertices z that are neighbours of x.

Let Ex(Tu), Ex(T(u,v)) to be the expected time starting from x to visit vertex u, and traverse

edge (u, v), respectively. Also, ExCe is the expected time starting from vertex x to visit (i.e.,

cover) all edges in both directions, ExCa visit all edges in at least one direction, ExCe visit all

edges in both directions. Let ExCRe be the expected time starting from vertex x to cover all

the edges in both directions, and then return to the vertex x, ExCRa the same as before but

cover only one direction. Moreover, let cv = maxu∈V {EuCv} be the vertex cover time. Finally,

cre = maxu∈V {EuCRe} be the edge cover and return time, cra = maxu∈V {EuCRa} be the arc

cover and return time.

In the following, we will interpret any undirected graph with its equivalent directed repre-

sentation; i.e., we replace each edge of the undirected graph with two bi-directed edges, (and

the same holds even for loops, or multiple edges). Additionally, we will consider m := |E|
when the edges are unweighted (or, simply, have weight one), and m := Σe ∈ E(G)l(e) when

each edge e is associated with a weight l(e).

3 Results and Proofs

3.1 On the results of paper [2]

We consider random walks on a simple un-weighted graph. Aleliunas et al. showed that the

vertex cover time is O(mn) [5].

Lemma 3.1. For any edge (v, w) it is EvT(v,w) < m.

Proof. We have: EvT(v,w) < EwTv +EvT(v,w) ⇒ EvT(v,w) < EwT(v,w) ⇒ EvT(v,w) < E(v,w)T(v,w).

Now, if we take the equivalent random walk on the edges, we would have that the stationary

probability for every edge is 1/m. Consequently, if we take a walk the expected time starting

from an edge to return to that edge would be m. Thus, EvT(v,w) < m.

Now, we have the following theorem which is based on this observation: if we are at a

specific vertex it is easy to cover all its adjacent edges; thus, if we cover all the vertices of a

graph, it is also easy to cover all its edges.

Theorem 3.2. For any positive k it is cra = O(k(cv +m1+ 1
k )).

2



Proof. We are taking a random walk starting at x, with which we want to cover all the edges.

We want to bound the length of this walk. We divide the walk into T walk pieces each with

duration Si, ∀i = 1, . . . , T . The division of the initial walk is as follows: at every piece we start

a random walk at x, we cover all vertices, we walk for another m1+ 1
k steps, and we continue

until we reach x again. When we arrive at x a new piece of walk starts. Observe that the

Si’s are i.i.d., because every walk piece starts from the same vertex, so it does not depend

to the previous piece-walks and comes from the same distribution. We need to compute

now how many such pieces we need until we are able to cover all directed edges, namely

T = min{t| all edges are traversed after S1, S2, ..., St steps}: ExCe ≤ Ex[Σ
T
i=1Si] ⇒ ExCe ≤

ExSiExT since Si’s are i.i.d., and using Wald’s identity [4]. Thus, we only need to bound ExSi

and ExT . We know from the definition of Si that: ExSi ≤ cv + m1+ 1
k + maxu{EuTx} ≤

2cv +m1+ 1
k . Next, to bound ExT we need the following: Let Bi,u,v be the event in which the

i-th walk fails to traverse the directed edge (u, v). We have the following Lemmas:

Lemma 3.3. Pr(Bi,u,v) < m−
1
k .

Proof. We define pj as the probability of going from x to (u, v) in j steps. We have that,

EuT(u,v) = Σ∞j=0pjj=ΣSi
j=0pjj + Σ∞j=Si+1pjj ⇒ EuT(u,v) > Σ∞j=Si+1pjj ⇒ m > Σ∞j>Si

pjj, using

Lemma 3.1. We have that Si > m1+1/k by definition so: m > m1+1/kΣ∞j>Si
pj ⇒ m−

1
k >

P (Bi,u,v), and the proof is complete.

Lemma 3.4. Pr(T > 2kj) < 1/mj.

Proof. It is Pr(T > 2k) = Pr(∃(u,w),∀i ∈ {1, . . . , 2k} : Bi,u,w), i.e., Pr(T > 2k) <

Σm
j=1Pr(∀i ∈ {1, . . . , 2k} : Bi,ej), or Pr(T > 2k) < Σm

j=1Pr(B1,ej , . . . , B2k,ej) = Σm
j=1Pr(B1,ej)

2k

because Si’s are i.i.d. Using the previous lemma 3.3: Pr(T > 2k) < m(m−
1
k )2k = 1/m. Fi-

nally, Pr(T > 2kj) = Pr(T = T1 + T2 + · · · + Tj > 2kj) = Pr(T1 > 2k, . . . , Tj > 2k) <

1/mj.

Now, we can prove that ExT < 2k/(1 − 1/m) since ExT = Σ∞j=0P (T > j) equals

Σ2k−1
j=0 P (T > j) + Σ4k−1

j=2kP (T > j) + . . . , which is less than 2kP (T > 0) + 2kP (T > 2k) + . . . ,

and using Lemma 3.4 this is less than 2kΣ∞j=01/mj.

So far, we established the bounds ExSi ≤ 2cv + m1+ 1
k , ExT < 2k/(1 − 1/m), and as a

result, for any positive k it is cre = O(k(cv +m1+1/k)).
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We note that, using results for the vertex cover problem as obtained by [5], as well as,

Theorem 3.2, we have that for k = 2 it is O(mn). On the other hand, for regular graphs where

m = n2−δ, if we take k > (2− δ)/δ, it is only O(n2).

3.2 On the results of paper [3]

Now, we have a random walk on a multi-graph with weights l on the edges (a multi-graph is a

graph that may have multiple edges and loops). Note that we can interpret our scheme as an

electrical network where the resistance of every edge is equal to the length of that edge. We

define the commute time T x↔y = Ex(Ty) + Ey(Tx) as the time it takes for a random walk to

travel from x to y and back to x.

Lemma 3.5. The ET x↔y = 2mRxy holds both for weighted and un-weighted graphs.

We note that the above was proved for unit edge lengths in [6]. Using Theorem 2.2 from [6]

and substituting the time you need to traverse an edge e (l(e)2) we have that the same result

holds even for graphs with weighted edges.

The basic idea of the entire proof is the use of four different expressions that represent four

different types of commute tour using as characteristic of each type the sub-networks the tour

traverse.

Suppose that G is the union of two sub-networks A,B such that A∩B = {x, y}, and A∪B
is the set of all vertices: We start from vertex x on G and we define four different types of

T x↔y related to closed walks start at x, pass through y, and return to x. Specifically:

1. An
−→
A−commute is a closed walk that passes through A as the walk goes from x to y.

2. An
←−
A−commute is a closed walk that passes through A as the walk returns from y.

3. An A−commute is a closed walk that passes through A.

4. An
←→
A −commute is a closed walk that passes through A both ways.

We compute the expected times for each of the above commute times: ET xyA , ET xy−→
A

, ET xy←−
A

,

ET xy←→
A

.

Proof. We start the walk from x and stop after T steps until we have the first commute we

are interested in from the above list, and we want to find ET . To this end, let Y be the

number of commute walks from x to y until we stop; Xi be the duration of every commute
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walk, i = {1, 2, . . . , Y } ⇒T = Σ1≤i≤YXi. Now, ET x↔y = 2mRxy is the expectation of every

Xi, from Lemma 3.5, so

ET = 2mRxyEY, (1)

because Xi’s are i.i.d., from Wald’s identity [4]. Therefore, to find ET we only need to compute

EY for each commute type:

1. ET xy−→
A

= 2mRA: Specifically, let pA be the probability that starting from x the first time

you go to y is through A. Disconnect the network at y and now we have two points for

y, yA and yB. We know that starting from x the probability that a random walk hits yA

before yB is 1/Vx [7]. Consequently, using Kirchoff’s Law and the laws for computing

Reff from [7] we compute that pA = Rxy/RA. Now, we can think of Y as the number

of Bernoulli trials until the first success with probability of success pA; i.e., Y follows a

geometric distribution. Therefore EY = 1
pA

. Using this result, and Eq. 1 we have the

result ET xy−→
A

= 2mRA.

2. ET xy←−
A

= 2mRA: As above.

3. ET xyA = 2mRA
RA+RB

2RA+RB
: Here, first denote as E1 the event that starting from x the first

time you go to y is through A, and as E2 the event that starting from y the first time you

go to x is through A. Then, observe that we need the success probability of the event

E1 ∪E2, i.e., Pr(E1 ∪E2) = Pr(E1) + Pr(E2)− P (E1 ∩E2), and since the trips from x

to y and from y back to x are independent, we have that Pr(E1 ∪E2) = 2pA− p2
A. Thus

by a similar argument as the above and using again the laws for computing Reff [7] and

Eq. 1 we have the result.

4. ET xy←→
A

= 2mRA
3RA+RB

2RA+RB
: Let Yi be the number of tries until the first A−commute is

achieved. Then, if at this A-commute both directions through A are always done with

probability one, then EY = EYi. However, there is a probability q that we will have

only the one direction through A at this A−commute, and as a result we will need

to do an additional Yii tries until we go though A in the other direction also, (i.e.,

EYii is as in the cases of
−→
A ,
←−
A ). In other words, q is the probability that the first

A-commute is not also an
←→
A -commute, i.e., q = Pr(¬

←→
A |A) = Pr(¬

←→
A ∩A)

Pr(A)
. Now, the

numerator is Pr((E1 ∩ ¬E2) ∪ (¬E1 ∩ E2)) = 2pA(1 − pA), while the denominator is

Pr(A) = Pr(E1 ∪ E2) = 2pA − p2
A. Thus, q = 2(1 − pA)/(2 − pA) = 2RA/(2RA + RB).
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Thus, since EY = EYi + qEYii using our previous computations and Eq. 1 we have the

result.

Theorem 3.6. Let N = (G, l) be an undirected network, where m = Σe∈E(G)l(e). Then,

cre ≤ 2m2, cra ≤ 3m2

• It is cra ≤ 2m2, were we have to cover just a predefined direction for each edge.

Proof. Let σ be a closed walk in G starting at r and traversing each edge once in each direction.

Such a walk exists: Take a spanning tree of G and do Depth First Search and expand the

walk so that it includes the remaining edges. We can divide this closed walk in epochs so

that it will be easier to prove our bound. For every undirected edge we have an epoch, that

is defined through two different time steps that each one concern each direction of that edge.

We enumerate the time steps τ(a) with the order the σ traverses the arcs from 1 to 2|E(G)|.
For every edge e an epoch is defined using the two time steps of the two arcs a and a′ that

come from e; the beginning is related to the first time an edge e is visited, let this be through

arc a, the end is then related to the time step of a′. If the edge is directed from x to y and

we traverse it through the same direction the time step of arc (x, y) is the time we are at y

using arc (x, y), differently if we traverse it through the other direction the time step of arc

(y, x) is the time we are at x after the previous time step. Let τ(a) < τ(a′) for two arcs that

come from the edge e, then the epoch of e can be defined as the addition of the following two

pieces [τ(a− 1), τ(a)] + [τ(a′− 1), τ(a′)], this will be a commute time between the two vertices

of that edge. We consider that the sub-network A consist of e and B = G − A. We mention

that the expected time of the epoch is the expected time of an
←−
A or an

−→
A commute that

depends of the direction of the predefined direction of e. The expected value will be 2ml(e)

from Lemma 3.5. The total time of the walk σ will be no more than all the commute times:

cra ≤ Σe∈E(G)2ml(e) = 2m2.

• cre ≤ 3m2, were we have to cover both directions for each edge.

Proof. Similarly with the above, we sum instead the expected time of the
←→
A −commute time

for every edge. Consequently, we take the quantity cre ≤ Σe∈E(G)2ml(e)
3l(3)+RB

2l(e)+RB
≤ 3m2.

Finally, we note that the above bounds are tight: The first is tight for a path of length m,

and the second is tight for a single vertex consisting of a loop of length m.
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