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Abstract

A random walk is a chance process studied in probability, which plays an important
role in probability theory and its applications. The first connection linking random walk
theory to computer science is the study based on the question of universal sequences,
which is related to some problems of computation complexity.

We introduce Stephen Cook’s original question on universal sequences, and provide a
theorem as the answer to it. Then we demonstrate the proof of this theorem provided by
Aleliunas et al [1], which depends on the analysis of random walks in undirected graphs.

1 Introduction

The question of universal sequences was proposed by Stephen Cook with the motivation for

the proof of lower bounds on the space complexity of the reachability problem.

Cook’s question[1] was set on n-vertex d-regular graph G, which means each vertex has

a fixed degree d. For each vertex v, let edges incident with v be labelled distinctly with

0, 1, · · · , d− 1. Note that the labels are assigned arbitrarily, which means that each endpoint

of an edge can be labelled in a different manner. A sequence σ in {0, 1, · · · , d− 1}∗, is said to

traverse G from v, if starting from vertex v following sequence σ, one covers all the vertices in

G. σ is called n− universal if it can traverse every n-vertex graph with degree d, from every

starting vertex v. So the question was: are there always short n-universal sequences? (Here

short means of polynomial in n.)

So if short n-universal sequences always exists, then the space complexity of reachability

problem in undirected graph is logspace. Let Tn be a two-way finite automaton to solve the

readability problem on input n. Just let Tn follow a sequence of move instructions and then
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stop, the problem can be solved. Aleliunas et al, gave us the result that universal sequences

do exists:

Theorem 1.1. There is an n-universal sequence of length O(n3log n). (Implied constant

depends only on the fixed degree d.)

To prove this theorem, we need not only to analyze random walk in an undirected graph,

but also to use a probabilistic method with a small probability of failure that can be made

arbitrarily small. The proof for this theorem is a good example for probabilistic algorithm’s

application. Before turning to the proof of the existence of universal sequences, we shall look

into the properties of random walks on undirected graphs first.

2 Preliminaries

Let G be an n-vertex undirected connect graph. di denotes the degree of vertex i. e is

the number of edges in G, which is
1

2

∑
i

di. Consider a random walk on G, the transition

probability Pij is:

Pij =

0 if {i, j} is not an edge
1

di
otherwise

Let Eiτj denote the expected time starting from i to reach j. Eiτi is the mean return time

of vertex i.

Lemma 2.1. For each vertex i of G, Eiτi =
2e

di

Proof. (cf. [2]) Let πi be the stationary probability of vertex i. Stationary distribution π =

(π1, π2, · · · , πn) satisfies:

πP = π and
∑
i

πi = 1

It’s easy to verify that πi =
di
2e

. Note that the stationary probability of a vertex is the

reciprocal of its mean return time. Just think one has probability πi to get back to i, which

means it takes
1

πi
time or steps to get back once.

For any edge {i, j} in G, we have πipij =
di
2e
· 1

di
=

1

2e
, which shows that the frequency of

an edge to be traversed from i to j is
1

2e
in long-run.
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Lemma 2.2. For any adjacent vertices i and j in G, Eiτj + Ejτi ≤ 2e (commute time from

i to j and back to i)

Proof. Notice that in long-run the mean time it takes to traverse i→ j is 2e. Actually this is

a upper bound for the commute time. Consider the worst case: edge {i, j} is a bridge in G,

which means before traverse i → j again, one cannot return to i. Thus the commute time of

any two adjacent vertices is no greater than 2e.

Define CG as the expected time to traverse all the vertices in G, also known as the cover

time of G.

Lemma 2.3. CG ≤ 2e(n− 1)

Proof. Let H be a spanning tree of G, then one can traverse all vertices starting and ending

at one vertex i. And each edge in H is traversed in each direction once. Let the sequence of

vertices traversed be i0, i1, · · · , i2n−2. Note that i = i0 = i2n−2. Obviously, the cover time CG is

no greater than the expected time to traverse all the vertices following order in this sequence.

The expected traversal time of H is:

Ei0τi1 + Ei0τi1+· · ·+Ei2n−3τi2n−2 =
∑
{i,j}∈H

Eiτj + Ejτi

By Lemma 2.2, the sum is no more than 2e(n− 1)

Lemma 2.2 and Lemma 2.3 can also be proved by using Chandra’s Theorem, that is: the

commute time between two vertices s and t (the expected length of a random walk from s to

t and back) is precisely characterized by the effctive resistance R between s and t: commute

time is 2eR[3]. For adjacent vertices i, j, the effective resistance is at most 1. It’s equal to 1

when the edge {i, j} is a bridge. For effective resistance of a graph, from Foster’s Theorem[4]

we know it’s n− 1. Both are consistent with the proof provide above.

3 The existence of universal sequences

The analysis of random walks on undirected graphs give us a loose upper bound of cover

time, which can result in the existence of universal sequences via the probabilistic method.
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The main idea is to show that expected number of n-vertex d-regular graphs the O(n3log n)

random sequence fails to traverse is less than 1, which means the universal sequence must

exist.

Proof. Let σ̃ be a random sequence in {0, 1, · · · , d− 1}∗ of length:

L = 2dn(n− 1)(dn+ 2)dlog2ne

Again, we have to ensure that the each label in this sequence is independent and the d char-

acters are equally likely to be chosen to form the sequence.

We also need random variables to record the success or failure of a walk following σ̃ for all the

labelled n-vertex d-regular graphs. Let X̃G,v be the family of random variables for the set of

labelled n-vertex d-regular graphs, which is indexed by the specific graph G and some starting

vertex v. Define X̃G,v as follows:

X̃G,v =


0 if starting from v, following σ̃,

one fails to traverse all the vertices in G

1 otherwise, success

Define random variable Ỹ =
∑
X̃G,v, the sum of expectation of counter examples of all n-

vertex d-regular graph, that is to say, Ỹ is the counter of failures. By definition, if Ỹ = 0,

then σ̃ is n-universal. So the key to prove that n-universal sequences exist, is to show that

when σ̃ is a random sequence, then Ỹ has to be less than 1.

We have E(Ỹ ) =
∑

E(X̃G,v) because expectation is linear. To prove that E(Ỹ ) is less than 1

means to prove that for each G, v, E(X̃G,v) is less than some value which depends on n and d.

Consider σ̃ is concatenated of N = (dn + 2)dlog2ne random subsequences s1, s2, · · · , sN each

with length l = 2dn(n−1). Note that each subsequence is independent with each other, which

means there’s no overlapping between any of them.

By Lemma 2.3, the cover time of such n-vertex d-regular graph G, CG ≤ 2e(n−1) = dn(n−1).

Also by Markov’s Theorem[5], P (C̃G ≥ t) ≤ CG

t
, here C̃G is a random variable for the time to

traverse all vertices in G, starting from some vertex v. In this case is:

P (C̃G ≥ l) ≤ CG

l
≤ 1

2
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This directly indicates that the probability of the the time to traverse all vertices in G with no

less than time l is no more than
1

2
, which means if we follow a random variable σ̃ with length

l, we have the same probability to fail to traverse all the vertices. Hence the expectation of

X̃G,v is no greater than
1

2
.

To compute the probability that none of the subsequences s1, s2, · · · , sN will cover all the

sequences in graph G starting from vertex v, since each subsequence is independent, we have:

E(X̃G,v) ≤ 2−N = 2−(dn+2)dlog2ne ≤ n−(dn+2)

We also have a upper bound for the number of labelled n-vertex d-regular graphs. The number

of such graphs is less than ndn. Just consider that for each vertex we have less than nd choices

of edges.

Finally, we get:

E(Ỹ ) =
∑

E(X̃G,v) ≤ ndn · n · n−(dn+2) = n−1 < 1

Note that the n in the middle is the number of choices for the starting vertex.

Thus the n-universal sequences of length O(n3log n) exists.

4 Conclusions

The proof of existence of n-universal sequences gives an affirmative answer to S. Cook’s ques-

tion and thus proves the lower bound of space complexity of reachability problem in unditected

graphs. In comparison, universal sequences for directed graphs are of larger length(O(dn)), and

the structure of reachability problem for directed graphs is quite different and more complex

than that for undirected graphs.

Also there are still some questions open. First is that even we have proved the existence of

universal sequences, but no one has ever been able to find one such sequence. That’s the magic

of probabilistic method, which one can prove the existence without providing one instance.

Secondly, whether this bound can be improved is yet to be answered.
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