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Abstract

Given any simple connected graph G =< V,E > such that each edge e ∈ E has unit
resistance, Foster’s Resistance Theorem states that the summation of effective resistances
over all edges equals n− 1. That is,

∑

e∈E

Re = n− 1

Further, given a general graph with resistances re corresponding to edges e ∈ E, the
theorem states:

∑

e∈E

Re

re
= n− 1

Tetali[1] proved Foster’s Resistance Theorem by considering traversals and then ap-
pling the Reciprocity theorem. In this paper, we go through that proof.

1 Introduction

Doyle and Snell [1] discovered a connection between electrical networks and random walks in

graphs. At the time, the discovery was novel and led to breakthroughs in both avenues of

research. Tetali [2] related the effective resistance Re for e ∈ E to traversals in a random walk.

This idea was inspired by the commute time [3]; and, along with the Reciprocity Theorem and

Kirchoff’s Current Law, the idea was used to prove Foster’s Resistance Theorem.

2 Preliminaries

Consider a simple network G =< V,E > where every edge e ∈ E has the same resistance re.

For a pair of vertices vi, vj ∈ V , we define Pij = Prob[vi can reach vj in one step] = 1/d(vi) if

(vi, vj) ∈ E and Pij = 0 otherwise.
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3 Theorems

Theorem 3.1. In a simple network where each edge has unit resistance, the effective resistance

Ri,j between any pair of vertices vi, vj ∈ V is equal to the expected number of traversals along

any specific edge (vi, vk) before arriving at vj in a random walk from vi to vj.

Proof. Let U i,j
k be the expected number of times we hit k before reaching j on a random walk

from i to j. To hit k, we must first hit a neighbor of k and then cross over an edge to k.

Therefore,

U ij
k =

∑

w

U ij
w Pwk =

∑

w

U ij
w

d(w)

since for w ∈ N(k) we have Pwk =
1

d(w)
.

Next, we divide both sides by d(k) to get:

U ij
k

d(k)
=

1

d(k)

∑

w

U ij
w

d(w)

Let Vkj denote the voltage difference between k and j. Then, we have:

(⋆) Vkj =
U ij
k

d(k)

Applying Kirchoff’s Current Law, we get:

Vkj =
∑

w

1

d(k)
Vwj where vw 6= vi ∧ vw 6= vj

Applying the definition of effective resistance over edge Rij =
Vij

rij
where Vkw = Vkj − Vwj ,

we find:

ikw = (Vkj − Vwj)/1 =
U ij
k

d(k)
−

U ij
w

d(w)

This completes the proof.

Theorem 3.2. The effective resistance Rij is equal to the expected number of edge traversals

out of vk along any specific edge (vk, vw) ∈ E where vk 6= vi ∧ vk 6= vj.

Proof. Let Uk denote the expected number of visits to k in a random walk that starts at vi,

goes to vj, and returns back to vi. It follows that the Uk = U ij
k + U ji

k Applying ⋆ , we get
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Uk = U ij
k + U ji

k = Vkjd(k) + Vikd(k)

= Vkjd(k)− Vkid(k) = Vijd(k)

−→ Rij =
Uk

d(k)

Recall that Uk

d(k)
is the expected number of visits to k along any specific edge (k, z) where

z ∈ N(k) in our random walk. The theorem follows.

Given a graph G =< V,E >, suppose we consider two electrical setups in which we give

special attention to four vertices i, j, k, and w with (i, j) ∈ E and (k, w) ∈ E. In the first

setup, setup 1, we apply a battery across vertices i and j with a voltage difference V 1
i,j that

admits a unit current from k to w. In the second setup, we apply a battery across vertices k

and w with voltage difference V 2
k,w that admits a unit current from i to j.

Theorem 3.3. In any single source connected graph, by the Reciprocity Theorem [4] we have

V 1
i,j = V 2

k,w.

We now consider two setups for the given graph. The first has source vi, sink vj, and a

voltage is applied so that the current flowing from vk to vj is a unit current. In the second

setup we have source vk, sink vj, and a voltage is applied so that the current flowing from vi

to vj is a unit current. Let Vij and Vkj be these respective voltages. By ⋆ and the previous

theorem, we have:

Vij = Vkj ⇌
U ij
k

d(k)
=

Ukj
i

d(i)

The right equation refers to random walks starting from vk and vi respectively and ending

at vj. The expected number of times we reach vj from one of its neighbours when vk 6= vj is

exactly 1. Therefore,

∑

vk∈N(vj)

U ij
k

d(k)
= 1 vi 6= vj

We apply the result above to the Reciprocity Theorem to get:
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∑

vk∈N(vj)

U ij
k

d(k)
=

∑

vk∈N(vj)

Ukj
i

d(i)
=

d(k)

d(k)
= 1

Since U ij
j = 0, we can sum over all vertices to get:

∑

vi∈V

∑

vk∈N(vj)

U ij
k

d(k)
= n− 1

Rewriting the previous equation, we get:

∑

(vi,vj)∈E

[U ij
k /d(k) + Ukj

i /d(i)] = n− 1

Applying Theorem 3.2, we complete Tetali’s proof of Forester’s Resistance Theorem[4]:

∑

(i,j)∈E

Ri,j = n− 1

4 General network

In order to extend Foster’s Resistance Theorem to general networks, we begin by defining

conductance ce = 1/re for edges e ∈ E and 0 along all other edges. For a vertex x, let c(x) be

the sum of the conductances of edges incident on x. Rewriting ⋆, we see:

⋆ ⋆ Vkj =
U ij
k

c(k)

We have:

Theorem 4.1.
∑

<vi,vj>∈E

Rij

rij
= n− 1

Proof. The proof starts by applying the Reciprocity Theorem[4]

U ij
k /c(k) = Ukj

i /c(i)

Multiplying both sides by cij we get

∑

vk∈N(vi)

U ij
k cij/c(k) =

∑

vi∈N(vj)

Ukj
i cij/c(i) = 1 ifk 6= j

4



−→
∑

vj∈G

∑

vi∈N(vi)

U ij
k cij/c(k) = n− 1

−→
∑

{vi,vj}∈G

[U ij
k cij/c(k) + U ji

k cji/c(k)] = n− 1

By theorem 3.2, we obtain the proof.
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