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Abstract

Given any simple connected graph G =< V, E > such that each edge e € E has unit
resistance, Foster’s Resistance Theorem states that the summation of effective resistances
over all edges equals n — 1. That is,
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Further, given a general graph with resistances r. corresponding to edges e € F, the
theorem states:
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Tetali[1] proved Foster’s Resistance Theorem by considering traversals and then ap-
pling the Reciprocity theorem. In this paper, we go through that proof.

1 Introduction

Doyle and Snell [1] discovered a connection between electrical networks and random walks in
graphs. At the time, the discovery was novel and led to breakthroughs in both avenues of
research. Tetali [2] related the effective resistance R, for e € E to traversals in a random walk.
This idea was inspired by the commute time [3]; and, along with the Reciprocity Theorem and

Kirchoft’s Current Law, the idea was used to prove Foster’s Resistance Theorem.

2 Preliminaries

Consider a simple network G =<V, E > where every edge e € E has the same resistance r,.
For a pair of vertices v;,v; € V, we define P;; = Prob[v; can reach v; in one step] = 1/d(v;) if

(vi,vj) € E and P;; = 0 otherwise.



3 Theorems

Theorem 3.1. In a simple network where each edge has unit resistance, the effective resistance
R; ; between any pair of vertices v;,v; € V is equal to the expected number of traversals along

any specific edge (v;,v;) before arriving at v; in a random walk from v; to v;.

Proof. Let U, 12] be the expected number of times we hit k before reaching j on a random walk
from ¢ to 5. To hit k, we must first hit a neighbor of £ and then cross over an edge to k.

Therefore,
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since for w € N (k) we have P, = ﬁ.

Next, we divide both sides by d(k) to get:
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Let Vj; denote the voltage difference between k and j. Then, we have:

Uy’
Vi = —F_
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Applying Kirchoff’s Current Law, we get:

1
Vij = Z MVM where vy, # Vi AUy # V;

Applying the definition of effective resistance over edge R;; = f” where Vi = Vij — Vs
ij
we find:

vy Uy
Ykw = (Vk‘j - ij)/l - d(l;f) - d(w)
This completes the proof. O]

Theorem 3.2. The effective resistance R;; is equal to the expected number of edge traversals

out of vy, along any specific edge (vg,vy,) € E where vy, # v; A\ vy # ;.

Proof. Let Uy denote the expected number of visits to k in a random walk that starts at v;,

goes to v;, and returns back to v;. It follows that the Uy = U,ij + U,zi Applying x , we get

2



Up = U +Ul" = Viyd(k) + Vigd()

— Vigd(k) — Viad(k) = Viyd(k)

Uk

Ry = ——
T k)

Recall that % is the expected number of visits to k along any specific edge (k, z) where

z € N(k) in our random walk. The theorem follows.

]

Given a graph G =< V, E >, suppose we consider two electrical setups in which we give
special attention to four vertices i, j, k, and w with (i,j) € F and (k,w) € E. In the first
setup, setup 1, we apply a battery across vertices ¢ and j with a voltage difference V;lj that

admits a unit current from k to w. In the second setup, we apply a battery across vertices k

and w with voltage difference V,ﬁw that admits a unit current from ¢ to j.

Theorem 3.3. In any single source connected graph, by the Reciprocity Theorem [4] we have
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We now consider two setups for the given graph. The first has source v;, sink v;, and a
voltage is applied so that the current flowing from v, to v; is a unit current. In the second
setup we have source vy, sink v;, and a voltage is applied so that the current flowing from v;
to v; is a unit current. Let V;; and Vj; be these respective voltages. By % and the previous

theorem, we have:
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The right equation refers to random walks starting from v, and v; respectively and ending
at v;. The expected number of times we reach v; from one of its neighbours when v;, # v; is
exactly 1. Therefore,
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We apply the result above to the Reciprocity Theorem to get:
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Since U}’ = 0, we can sum over all vertices to get:
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Rewriting the previous equation, we get:
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Applying Theorem 3.2, we complete Tetali’s proof of Forester’s Resistance Theorem/[4]:

Z Rij=n—-1
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4 General network

In order to extend Foster’s Resistance Theorem to general networks, we begin by defining
conductance ¢, = 1/r, for edges e € E and 0 along all other edges. For a vertex z, let ¢(x) be

the sum of the conductances of edges incident on x. Rewriting x, we see:

Uy’
Vi = —k_
* % kj c(k’)
We have:
Theorem 4.1.
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Proof. The proof starts by applying the Reciprocity Theorem[4]
U fe(k) = U (i)
Multiplying both sides by ¢;; we get

Y Uleyfek)= Y Ulcyjeli)=1 ifk+#j

v €N (v;) v, €N (vj)
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By theorem 3.2, we obtain the proof. m
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