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Abstract

Let G be a connected graph, and X and Y be two tokens placed on G. We move both
X and Y with simple random walks on G. Each turn one of the tokens will be moved
along its walk, however we may choose which token to advance each turn. Furthermore
we will assume that the entire random walk that both X and Y will take are known.
The question we explore is: given the knowledge of the entire walk in advance, for what
graphs G can we keep the tokens apart forever. If we can keep the tokens apart forever we
will call the graph navigable. We show that if G is Z or a cycle then G is not navigable.

1 Introduction

Given a graph G and a token on one of the vertices, one can construct a random walk by moving

the token to an adjacent vertex each turn with equal probability of going to each neighbor. A

lot has been done on random walks with one token. However we can ask questions about two

random walks on the same graph. We start with two tokens on a graph, and there is a demon

(called the Clairvoyant Demon) who can see the entire random walk of each token. The demon

must move one token each turn, but may choose which token to move. Is it possible for the

demon to keep the tokens apart forever? This question was first asked in [2], and was further

explored in [1]. If the demon can not see into the future (or even if he can only see finitely far

into the future), then he is guaranteed to fail, as proven in [1].

As noted in [1], it is easier to solve the problem when we instead have a stronger demon

called the fickle demon. The fickle demon has the power to move a token backwards along

its path. Thus if the fickle demon can’t keep the tokens apart, then the clairvoyant demon

will also fail to keep the tokens apart. Even though the problem is harder if we only look at
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the clairvoyant demon, it has been shown that in [3] that for sufficiently large m, that Km is

navigable.

2 Preliminaries

We will denote a infinite random walk by a capital boldface letter X = v0v1v2 · · · which will

can be written as a string of symbols representing the vertices of the graph is traverses. Given

a infinite random walk X, the same letter but in lightface will represent a finite walk that

terminates X as some vertex. X = v0v1 · · · vk for some k ∈ N. If X = v0v1 · · · vk, then

X−1 = vkvk−1 · · · v0 will be the reverse path of X. We will also let < X,Y > denote the

two random walks that the tokens must travel on in a given graph. We will call a pair of

walks blocked if the demon can’t move the tokens arbitrary far along their paths without them

colliding at some point.

Let U = u0u1 · · ·um and V = v0v1 · · · vn be finite walks on the same graph. We say there is

a projection from V to U , denoted V → U if there exists a map π from the set {0, 1, 2, · · · , n}

to {0, 1, 2, · · · ,m} such that the following hold:

1. π is surjective

2. π(0) = 0

3. πn = m

4. |π(i+ 1)− π(i)| = 1 for all 0 ≤ i < n

5. uπ(i) = vi for all 0 ≤ i ≤ n

If we have a map π that satisfies all the above except 2, we call the map a prejection and

denote it V ↪→ U .

Theorem 2.1. Let X and Y be finite initial segments of X and Y. if there exists a walk Z

such that X ↪→ Z and Y ↪→ Z−1. Then tokens that begin at X and Y will collide regardless

of how they are moved, that is, < X,Y > is blocked.
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Proof. Let X = x0x1 · · ·xm, Y = y0y1 · · · yn and Z = z0z1 · · · zk. Let α be a prejection from

X to Z, and β be a prejection from Y to Z−1. We will interpret β(i) to be the indices of the

forward walk on Z so that β(0) = k and β(n) = 0. Assume that it is possible to prevent the

tokens from colliding. Let it be the step that the X token is on in its walk after we have taken

t turns. Define jt similarly for Y . Observe that α(it) = β(jt) means we have a collision. Let s

be the minimum time such that is = m or js = n. Thus both α(it) and β(jt) are defined for

0 ≤ t ≤ s. Let A be the set of all t such that α(it) > β(jt). Since we assumed that we never

collide s ∈ A. Since α and β are prejctions, and thus only change by 1 each time, and that we

only move one token at a time, by our assumption that we never collide it must be true that

t ∈ A for all t < s. But if is = m then α(it) = 0 for some t < s but then 0 = α(it) 6> β(jt) since

β is bounded below by 0. If js = n, then β(it) = k for some t < s but then α(it) 6> β(jt) = k

since α is bounded above by k. Thus they must collide.

Although we do not show it here, the converse is also true. That is, if < X,Y > is blocked,

there exists walks X, Y , and Z such that X ↪→ Z and Y ↪→ Z−1. The proof of this can be

found in [1].

It is important to note that there are other ways of rephrasing the problem here. As noted

in [1], the problem can be rewritten as a percolation problem. Consider the infinite graph of

non-negative pairs integers where an edge joins two vertices if their first or second (but not

both) integer differ by a magnitude of 1. Let our pair of random walks be X = x0x1 · · · and

Y = y0y1 · · · . Starting at the origin, we label the rows of the graph with the vertices Y visits,

and the columns of the graph with the vertices that X visits. Now create a new graph G by

removing all vertices (xi, yj) where xi = yj. Then the clairvoyant demon starts at the origin

and can move either to the right or up, corresponding to moving the X token or the Y token

respectively, this is a directed percolation problem. For the fickle demon he can move in any

direction since he can move backwards along a walk, this is a undirected percolation problem.

A further analysis of the problem in this setting can be found in [1] and [3].
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3 Results

We are now ready to prove the main result.

Theorem 3.1. The infinite graph Z is non-navigable, that is, for any two simple random

walks X and Y, < X,Y > is blocked.

Proof. Without loss of generality we can assume that that x0 = −1 and y0 = 1. Let Zk be

the path from −2k to 2k. Let Ak be the event that the X token hits 2k before it hits −2k, and

Bk be the event that the Y token hits −2k before it hits 2k. Observe that for At and Bs are

independent for any t and s. Thus the probability of both A1 andB1 happening is 1/16 in which

case Z0 blocks < X,Y >. Otherwise either both A1 and B1 didn’t happen, or one of them

did and the other didn’t. If neither occurred then the probability of both A2 and B2 occurring

is 1/16 because we have the X token at -2 and the Y token at 2. Otherwise both tokens are

now at the same point and the probability of both A2 and B2 occurring is 3/16. Observe that

we can induct of this process and get that the probability of Ak and Bk occurring given that

Ak ∧Bk is false is at least 1/16. Thus the probability of having a Zk blocking < X,Y > is at

least 1/16 + 15/16(1/16) + (15/16)2(1/16) + · · · = (1/16)(1/(1− (15/16))) = 1. So Z can’t be

navigated.

We can use the above result to make statement about cycles as well.

Corollary 3.2. Every cycle, Cn, is non-navigable.

Proof. Observe that any random walk on a cycle can be translated into a random walk on the

infinite line by having a clockwise step be a step to the right and a counterclockwise step be

a step to the left. If < X,Y > was not blocked on the cycle it would not be blocked on the

line. But since the line is non-navigable, that must be false. Thus the cycle is non-navigable.

We can also look at relationships between graphs and see how the demon does on both.

Theorem 3.3. The graph Kn is navigable if and only if K1,n is navigable.
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Proof. Denote the vertices of Kn by vi for 1 ≤ i ≤ n and the vertices of K1,n by ui for 1 ≤ i ≤ n

for the leaves and u0 for the non-leaf vertex. Define ϕ to be a function that takes random

walks on Kn to random walks on K1,n. Let X = vi1vi2vi3 · · · , Then ϕ(X) = ui1u0ui2u0ui3 · · · .

Observe that ϕ is a bijection between walks on Kn and walks on K1,n. Let < A,B > be a

pair of blocked paths in Kn. Then we have X, Y , and Z such that X ↪→ Z and Y ↪→ Z−1.

But then the pair < ϕ(A), ϕ(B) > has paths ϕ(X), ϕ(Y ), and ϕ(Z) such that ϕ(X) ↪→ ϕ(Z)

and ϕ(Y ) ↪→ ϕ(Z−1). Thus < ϕ(A), ϕ(B) > is blocked. Similarly if < A,B > be a pair of

blocked paths in K1,n, < ϕ−1(A), ϕ−1(B) > is blocked in Kn. Since ϕ is a bijection. If Kn

has a nonzero probability of picking a unblocked pair, then K1,n has a nonzero probability of

picking a unblocked pair and vice versa. Thus Kn is navigable if and only if K1,n is navigable.

As a result of this we get

Corollary 3.4. K1,3, is non-navigable.

Proof. Since every cycle is non-navigable and K3 = C3, K3 is non-navigable. From 3.3 we

know that K1,3 is navigable if and only if K3 is navigable. Thus K1,3 is non-navigable.

4 The Clairvoyant Demon

It has been shown in [1] that the only non-navigable finite graphs are the ones we have shown
to be non-navigable. Thus a graph G is navigable if and only if it is not a cycle, line segment
or K1,3. For the clairvoyant demon we can modify the techniques above to get the following.

Let U = u0u1 · · ·um and V = v0v1 · · · vn be finite walks on the same graph. We say there is
a production from V to U if there exists a map π from the set {0, 1, 2, · · · , n} to {0, 1, 2, · · · ,m}
such that the following hold:

1. π is surjective

2. π(0) = 0

3. πn = m

4. π(i+ 1)− π(i) ≤ 1 for all 0 ≤ i < n

5. uπ(i) = vi for all 0 ≤ i ≤ n
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If we have a map π that satisfies all the above except 2, we call the map a preduction.
It is not hard to show that a similar theorem to 2.1 holds for what we have just defined

for the clairvoyant demon. However, while the theorem will produce a sufficient condition to
determine if the clairvoyant demon is blocked, it will not give us a necessary condition. Thus
different techniques will be needed to determine when the clairvoyant demon is blocked. Some
of these techniques can be seen in [3] where it is proven that the clairvoyant demon is not
blocked with nonzero probability on Km for sufficiently large m. However these techniques
depend on advance combinatorial arguments that are beyond the scope of this paper.
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