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T=mTy...Th €Sn, 0 ESm.

Classical definition:
m contains o if it has a subsequence order-isomorphic to o.

Ex: 25134 contains 132
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Ex: 25134 contains 132
In this talk we will use a different definition:

T contains o as a consecutive pattern if it has a subsequence of
adjacent entries order-isomorphic to o.
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Consecutive patterns

T=mTy...Th €Sn, 0 ESm.

Classical definition:
m contains o if it has a subsequence order-isomorphic to o.

Ex: 25134 contains 132
In this talk we will use a different definition:

T contains o as a consecutive pattern if it has a subsequence of
adjacent entries order-isomorphic to o.

Ex: 25134 avoids 132, but 42531 contains 132
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Consecutive patterns

T=mTy...Th €Sn, 0 ESm.

Classical definition:
m contains o if it has a subsequence order-isomorphic to o.

Ex: 25134 contains 132

In this talk we will use a different definition:
T contains o as a consecutive pattern if it has a subsequence of
adjacent entries order-isomorphic to o.

Ex: 25134 avoids 132, but 42531 contains 132
15243 contains two occurrences of 132

In this talk, containment and avoidance will always refer to
consecutive patterns.
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History

Consecutive patterns appear naturally in combinatorics:

» Occurrences of 21 are descents.
» Occurrences of 132 and 231 are peaks.

» Permutations avoiding 123 and 321 are alternating
permutations.
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History

Consecutive patterns appear naturally in combinatorics:

» Occurrences of 21 are descents.
» Occurrences of 132 and 231 are peaks.

» Permutations avoiding 123 and 321 are alternating
permutations.

The systematic study of consecutive patterns in permutations
started 12 years ago.

Work in the area by Noy, Babson, Steingrimsson, Claesson,
Mansour, Kitaev, Mendes, Remmel, Dotsenko, Khoroshkin, Shapiro,
Ehrenborg, Perry, Baxter, Nakamura, Zeilberger among others.
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Definitions
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Some of the questions being studied

Let ¢,(7m) = # of occurrences of o in ,
ap(o) = # of permutations of length n that avoid o,

) W w)z P,(0,2) = Zan(a)i—:.

n>0 meS, n>0
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Introduction
Definitions
History

Some of the questions being studied

Let ¢,(7m) = # of occurrences of o in ,
ap(o) = # of permutations of length n that avoid o,

=33 ue ”)Z Py(0,2) = Zan(a)zn

n>07ES, n>0

» Exact enumeration: find P,(u,z) or P,(0, z).

» Classification of patterns according to Wilf-equivalence.
We write o ~ 7 if P,(u,z) = P(u, z).

» Asymptotic behavior of (o).
Comparison of () for different patterns.
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Patterns of small length

Length 3: two classes (compare to one class in classical case)

123 ~ 321
132 ~ 231 ~ 312 ~ 213
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Introduction
Definitions
History

Patterns of small length

Length 3: two classes (compare to one class in classical case)

123 ~ 321
132 ~ 231 ~ 312 ~ 213

Length 4: seven classes (compare to three classes in classical case)

1234 ~ 4321 enumeration solved
2413 ~ 3142 enumeration unsolved
2143 ~ 3412

1324 ~ 4231

1423 ~ 3241 ~ 4132 ~ 2314
1342 ~ 2431 ~ 4213 ~ 3124 1432 ~ 2341 ~ 4123 ~ 3214
1243 ~ 3421 ~ 4312 ~ 2134

. *
All ~ follow from reversal and complementation except for ~.
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Methods The cluster method
Linear extensions

Clusters

We use an adaptation of the cluster method of Goulden and
Jackson, based on inclusion-exclusion.

Informally, a k-cluster w.r.t. o € Sy, is a permutation filled with
occurrences of o that overlap with each other.
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Methods The cluster method
Linear extensions

Clusters

We use an adaptation of the cluster method of Goulden and
Jackson, based on inclusion-exclusion.

Informally, a k-cluster w.r.t. o € Sy, is a permutation filled with
occurrences of o that overlap with each other.
More precisely, a k-cluster is (m; i, i, ..., ix) where

» TS,

> l=i <hh<--<ig=n—m+l,

v

Tj;Tii+1 - - - Tj4-m—1 1S @n occurrence of o for all j,

v

li+1 < ij+m—1forall j.
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Methods The cluster method
Linear extensions

Clusters

We use an adaptation of the cluster method of Goulden and
Jackson, based on inclusion-exclusion.

Informally, a k-cluster w.r.t. o € Sy, is a permutation filled with
occurrences of o that overlap with each other.

More precisely, a k-cluster is (m; i, i, ..., ix) where
» TS,
> l=i <hh<--<ig=n—m+l,
> TjTj41---Ti+m—1 IS an occurrence of o for all j,

> ijip1 < ij+m—1forall .

Ex: (142536879;1,3,6) is a 3-cluster w.r.t. to 1324.
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Methods The cluster method
Linear extensions

Set of overlaps

Oy ={i: 0j410i12...0m and 0102 ...0m—_; are the same ‘pattern’}

(i.e., overlapping occurrences of o may be shifted by / positions)
Ex: O1324 = {2,3}, O1s243 = {3,5}, O12.m={1,2,...,m—1}.
Always m —1 € O,.
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Methods The cluster method
Linear extensions

Set of overlaps

Oy ={i: 0j410i12...0m and 0102 ...0m—_; are the same ‘pattern’}
(i.e., overlapping occurrences of o may be shifted by / positions)

Ex: Oi324 = {2,3}, Ois2a3 = {3,5}, O12.m={1,2,...,m—1}.
Always m —1 € O,.

We say that o € S, is non-overlapping if O, = {m —1}.

Ex: 21534 is non-overlapping.
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Methods The cluster method
Linear extensions

Set of overlaps

Oy ={i: 0j410i12...0m and 0102 ...0m—_; are the same ‘pattern’}

(i.e., overlapping occurrences of o may be shifted by / positions)
Ex: Oi324 = {2,3}, Ois2a3 = {3,5}, O12.m={1,2,...,m—1}.
Always m —1 € O,.

We say that o € S, is non-overlapping if O, = {m —1}.

Ex: 21534 is non-overlapping.

In a cluster (7; i1, /2, ..., ik) w.rt. o we have ij41 —ij € O, for all 5.

Ex: (142536879;1,3,6) is a cluster w.r.t. 1324.
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Methods The cluster method
Linear extensions

The cluster method

Let the EGF for clusters be

ZN
Ro'(t’ Z) = Z r,,7ktkn—,
n,k ’

where r, i := number of k-clusters of length n w.r.t. o.
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Methods The cluster method
Linear extensions

The cluster method

Let the EGF for clusters be

ZN
Ro'(t’ Z) = Z r,,7ktkn—,
n,k ’

where r, i := number of k-clusters of length n w.r.t. o.

Theorem (Goulden-Jackson '79, adapted)

T 1-z-Ry(u—1,2)
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Methods The cluster method
Linear extensions

The cluster method

Let the EGF for clusters be

ZN
Ro'(t’ Z) = Z r,,7ktkn—,
n,k ’

where r, i := number of k-clusters of length n w.r.t. o.

Theorem (Goulden-Jackson '79, adapted)

1
1-z-R,(u—1,2)

Py(u,z)

This reduces the computation of P,(u,z) to the enumeration of
clusters.
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Methods The cluster method
Linear extensions

Clusters as linear extensions of posets

Let o0 € S,
Let1=15 <ip <:-- < iy =n—m+1 with ijj;; —i; € O, for all j.
Then

(m; i,y ..., ig) is a cluster

)

Tj;Tii+1 - - - Ti+-m—1 is an occurrence of o for all j
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Methods The cluster method
Linear extensions

Clusters as linear extensions of posets

leto €Spm, <=o01
Let1=15 <ip <:-- < iy =n—m+1 with ijj;; —i; € O, for all j.

Then

(m; i,y ..., ig) is a cluster

=

Tj;Tii+1 - - - Ti+-m—1 is an occurrence of o for all

)

ey +i—1 < Mo tis—1 < e < T +ij—1 for aIIj

m is a linear extension of the poset defined by these relations
(we call this a cluster poset)
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Methods The cluster method
Linear extensions

Clusters as linear extensions of posets: example

Take o = 14253. Then O, = {2,4}, o~ ! = 13524.

(my w3 T T Te T T T9M10711; 1, 3, 7)is a cluster
T <m3 <7 <7y < Mg
3 <75 < Ty < Mg < T
7 < Mo < 11 < Mg < 710
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Linear extensions

Clusters as linear extensions of posets: example

Take o = 14253. Then O, = {2,4}, o~ ! = 13524.

(mymom3ma T e T T9T10711; 1, 3, 7)is a cluster
T <m3 <75 <7y < Ty
T3 < Ty < Ty < Mg < T
7 < Mo < 11 < Mg < 710
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Methods The cluster method
Linear extensions

Clusters as linear extensions of posets: example

Take o = 14253. Then O, = {2,4}, o~ ! = 13524.

(mymom3ma T Te Ty T T9M10711; 1, 3, 7)is a cluster
T <m3 <75 <7y < Ty
3 <75 < Ty < Mg < T
T < Mo < M1 < Mg < 10
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Methods The cluster method
Linear extensions

Clusters as linear extensions of posets: example

Take o = 14253. Then O, = {2,4}, o~ ! = 13524.

(my w3 T T Te T T T9M10711; 1, 3, 7)is a cluster
i
T <m3 <75 <7y < Ty
3 <75 < Ty < Mg < T
7 < Mo < 11 < Mg < 710
II T10
g
11

7 is a linear extension of

9
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Methods The cluster method
Linear extensions

Clusters as linear extensions of posets: example

Take o = 14253. Then O, = {2,4}, o~ ! = 13524.

(my w3 T T Te T T T9M10711; 1, 3, 7)is a cluster

T <m3 <75 <7y < Ty
3 <75 < Ty < Mg < T
T < g < 1 < g < 710

w10 = 10

7 is a linear extension of

Ex:1628311495107
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ne and related pat
overlapping and r ed patterns
Exact enumeration The pattern 1324 and generalizations
Other patterns

Notation

1 n
Py(u,z) = ——— = Z Z yeor(mZ_ (EGF for occurrences of o)

P-(0.2) =Y an(0);
n>0
n
R,(t,z) = Z r,,7ktk% (EGF for clusters)
n,k ’
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e and related patterns
rlapping and re | patter
Exact enumeration The pattern 1324 and generalizations
Other patterns

Notation

1 z"
Py(u,z) = ——— = uce (M (EGF for occurrences of o)
7 wey(u, z) g Wgﬂ n!
zn
P(0.2) = 3 (o),
n>0 )
n
R,(t,z) = Z r,,7ktk% (EGF for clusters)
nk ’

By the cluster method, w,(u,z)=1—2z— R,(u—1,z).
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e and related patterns
rlapping and re | patter
Exact enumeration The pattern 1324 and generalizations
Other patterns

Notation

1 n
Po(u,z) = wo(0.2) = Z Z uC"(“)% (EGF for occurrences of o)
o\ n>0 TES, )
zn
PU(O,Z) = Zan(a)_l
n>0
n
R,(t,z) = Z r,,7ktk% (EGF for clusters)
nk ’

By the cluster method, w,(u,z)=1—2z— R,(u—1,z).

We will give differential equations for w,(u, z) for some patterns o.
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rlapping and re | patter
Exact enumeration The pattern 1324 and generalizations
Other patterns

Notation

1 n
Po(u,z) = wo(0.2) = Z Z uC"(“)% (EGF for occurrences of o)
o\ n>0 TES, )
zn
PU(O,Z) = Zan(a)_l
n>0
n
R,(t,z) = Z r,,7ktk% (EGF for clusters)
nk ’

By the cluster method, w,(u,z)=1—2z— R,(u—1,z).

We will give differential equations for w,(u, z) for some patterns o.

» All derivatives will always be with respect to z.
» Initial conditions will be omitted.
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Monotone and related patterns
Non-overlapping and related patter

Exact enumeration The pattern 1324 and generalizations
Other patterns

The pattern o =12...m

Theorem (E.-Noy '01)

For o =12...m, w,(u, z) is the solution of

w(m—l) + (1 _ u)(w(m—z) +od W+ w) =0.

Consecutive patterns in permutations



Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

The pattern o =12...m

Theorem (E.-Noy '01)

For o =12...m, w,(u, z) is the solution of

w(m—l) + (1 _ u)(w(m—2) +od W+ w) =0.

Ex: /3 22
P]_23(0,Z) = 7\/_3—
cos(5°z + §)
2
P1234(0, 2) = cosz — sin z —|— e—Z
ij+1
In general, w12..m(0, z) Z (J )| Z Gm 1]

Jj=0
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Proof sketch

Tn For each choiceof 1 =1 < ih < --- < iy = n—m+1 with
fit1—1; € O1o..m={1,2,...,m—1} for all j,

there is exactly one cluster (7; i1,. .., i),

because the cluster posets are chains w1 < mp < - -+ < mp,.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Proof sketch

Tn For each choiceof 1 =1 < ih < --- < iy = n—m+1 with
fit1—1; € O1o..m={1,2,...,m—1} for all j,

there is exactly one cluster (7; i1,. .., i),

because the cluster posets are chains w1 < mp < - -+ < mp,.

We deduce that the EGF Ria. m(t, z) for clusters satisfies
R(m—1) _ t(R(m_z) +. .+ R+R+ z),

which gives the diff. eq. for wia. m(u, z).
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Chain patterns

We say that o is a chain pattern if all the cluster posets are chains.

Theorem (E.-Noy '11)

Let 0 € Sy, be a chain pattern. Then w,(u, z) is the solution of

wm= 4 (1 - ) Z wlm=d=1) — g,
deO,
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Chain patterns

We say that o is a chain pattern if all the cluster posets are chains.

Theorem (E.-Noy '11)

Let 0 € Sy, be a chain pattern. Then w,(u, z) is the solution of

wm= 4 (1 - ) Z wlm=d=1) — g,
deO,

Corollary

Letc=123... (s —1)(s+1)s(s+2)(s+3)...m. Then w,(u,z)
is the solution of

w(m—l) + (1 _ u)(w(m—s—l) 4+ + w) =0.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Examples

Ex: For o = 12435, w,(u, z) satisfies

w® 4+ (1 - u) (W +w)=0.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Examples

Ex: For o = 12435, w,(u, z) satisfies

w® 4+ (1 - u) (W +w)=0.

Ex: Both wi23s546(u, z) and wi24536(u, z) satisfy
w® + (1 - u)(w +w)=0.

This proves Nakamura's conjecture that 123546 ~ 124536.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Non-overlapping patterns

Recall: o € Sy, non-overlapping if O, = {m — 1}, i.e,,
two occurrences of o can't overlap in more than one position.

Ex: 132, 1243, 1342, 34671285.

Consecutive patterns in permutations



Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Non-overlapping patterns

Recall: o € Sy, non-overlapping if O, = {m — 1}, i.e,,
two occurrences of o can't overlap in more than one position.

Ex: 132, 1243, 1342, 34671285.

Theorem (Béna '10)
The proportion of non-overlapping patterns of length m is > 0.364.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Non-overlapping patterns

Recall: o € Sy, non-overlapping if O, = {m — 1}, i.e,,
two occurrences of o can't overlap in more than one position.

Ex: 132, 1243, 1342, 34671285.
Theorem (Béna '10)
The proportion of non-overlapping patterns of length m is > 0.364.

Proposition (Dotsenko-Khoroshkin, Remmel "10)

For o € Sy non-overlapping, P,(u,z) depends only on o1 and op,.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Non-overlapping patterns

Theorem (E.-Noy '01)
Let 0 € S, be non-overlapping with o1 =1, 0y = b. Then
wgy(u, z) is the solution of

m—b
V4
'w' =0.

RO R
B ey
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Non-overlapping patterns

Theorem (E.-Noy '01)

Let 0 € S, be non-overlapping with o1 =1, 0y = b. Then
wgy(u, z) is the solution of

m—b
V4
'w' =0.

RO R
B ey

Ex: For b =2,
m—1

z v
wU(U,Z) =1 —/ e(u_l)m dv.
0

1
1= JZ 1P /24y

Consecutive patterns in permutations

Pi32(u,z) =



Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Proof sketch using cluster method

Suppose a =01 < oy = b.
Clusters (7; i1, ip, ..., ix) w.r.t. o satisfy
iiy1 —ij=m—1forall j.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Proof sketch using cluster method

Suppose a =01 < oy = b.
Clusters (7; i1, ip, ..., ix) w.r.t. o satisfy
iiy1 —ij=m—1forall j.

They are linear extensions of posets like this:

b—1

&
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Proof sketch using cluster method

Suppose a =01 < oy = b.
Clusters (7; i1, ip, ..., ix) w.r.t. o satisfy
iiy1 —ij=m—1forall j.

m—a
They are linear extensions of posets like this:
For o1 = 1, we deduce a diff. eq. for the EGF
for clusters: a-1
R() — tﬂ(l + R m—h
— (m—b) ’
which gives the diff. eq. for w,(u, z).
b—1
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Consequences of the proof

» These posets depend only on a3 = o7 and
b=om.

b—1

&
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Consequences of the proof

» These posets depend only on a3 = o7 and
b=om.

» k-clusters have size n = k(m—1) + 1.

b—1

&
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Consequences of the proof

» These posets depend only on a3 = o7 and

b=om.
m—a
» k-clusters have size n = k(m—1) + 1.
» If di is the number of k-clusters, then
Fk(m=1)+1 7 a1

we(u,z) = 1—z—Z(u—1)kdk

k>1

(k(m=1)+1)1

b—1

&
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

The patterns 12534 and 13254

Proposition (E.-Noy '11)
wi2s34(u, 2) is the solution of w®*) + (1 — u)z(w" 4+ ') =0,

wi32s4(u, 2) is the solution of w®*) + (1 — u)(w” + zw') = 0.
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Monotone and related patterns
Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Exact enumeration

The patterns 12534 and 13254

Proposition (E.-Noy '11)
wi2s34(u, 2) is the solution of w®*) + (1 — u)z(w" 4+ ') =0,

wi32sa(u, z) is the solution of w® + (1 — u)(w” + zw') = 0.

Similar arguments prove three more conjectures of Nakamura:

> 123645 ~ 124635 — solution of w® 4 (1 — v)z(w” + ')

0
> 132465 ~ 142365 — solution of w(® + (1 — v)(w” 4 zw') = 0.
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Monotone and related patterns
Non-overlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Exact enumeration

The patterns 12534 and 13254

Proposition (E.-Noy '11)
wi2s34(u, 2) is the solution of w®*) + (1 — u)z(w" 4+ ') =0,

wi32sa(u, z) is the solution of w® + (1 — u)(w” + zw') = 0.

Similar arguments prove three more conjectures of Nakamura:

> 123645 ~ 124635 — solution of w® 4 (1 — v)z(w” + ')
» 132465 ~ 142365 — solution of w® 4 (1 — v)(w” + zu)
> 154263 ~ 165243.

0
0.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Wilf-equivalence classes

This completes the classification of patterns of length up to 6 into
consecutive Wilf-equivalence classes.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Wilf-equivalence classes

This completes the classification of patterns of length up to 6 into
consecutive Wilf-equivalence classes.

There are

» 2 classes for length 3,

v

7 classes for length 4,

v

25 classes for length 5,

v

92 classes for length 6.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

The pattern 1324

Theorem (E.-Noy '11)
For 0 = 1324, w,(u, z) is the solution of

20O —((1—1)z—3)w® —=3(u—1)(2z4+1)w® + (u—1)((4u—5)z—6)w"
+(u—1)8(u—1)z—3) +4(u—1)%z2w=0
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Proof sketch

Exact enumeration

ne and related pat

erlapping and related patterns
The pattern 1324 and generalizations
Other patterns

Clusters (m; i1, ..,

lji+1 —

Clusters where ij 11 —

ix) satisfy

ij € O1324 = {2,3} for all J.

correspond to linear extensions of

ij=2forallj

T2k+2
T2k
T2k T2k+1

T2k—1

e

T4 7
T2 s
3
1
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Proof sketch

Clusters (m; i1, ..., k) satisfy T2k+2
I'j+1 — I'j € O34 = {2,3} for all J. T2k
. . . T2k~ T2k+1
Clusters where ij 11 — ij = 2 for all j S
correspond to linear extensions of e
T4 7
These are counted by the Catalan numbers.
2 5
For general clusters, we get towers of these ™
posets. m
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Proof sketch

Clusters (m; i1, ..., k) satisfy T2k+t2
I'j+1 — I'j € O34 = {2,3} for all _] T2k
. . . T2k~ T2k+1
Clusters where ij 11 — ij = 2 for all j S
correspond to linear extensions of e
T4 7
These are counted by the Catalan numbers. -

For general clusters, we get towers of these ™

posets. We deduce the OGF for clusters 1
Z" (ko x(1 —2tx(1 4 x) + V1 — 4tx?)
X =
i 2(1 — tx(1 + x)?)
n

We turn this into an diff. eq. for the OGF, and then into a diff eq.
for the EGF Ry324(t, z) and for wi3pa(u, 2).
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

The pattern 134... (s +1)2(s +2)(s+3)...m

Theorem (E.-Noy '11)
The OGF for clusters w.r.t. 0 =134...(s+1)2(s+2)(s+3)...m

is
S ftxn X2 (B(tx°) — 1)
Mkt x" = 5 P s
— 1—(x+x2+--+xms71)(B(tx®) — 1)
where

B(x) =1+ xB(x)°*.

For small s and m, we can deduce a differential equation for
we(u, 2).
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Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Proof idea

mk-1stm 1 he cluster posets are towers of posets
Tks+3

Tgel3 like this one.
Tks

T(k—1)s+3
T(k— 7‘-‘(-k71)s+2

Consecutive patterns in permutations



Proof idea

Monotone and related patterns
Non-overlapping and related patterns
Exact enumeration The pattern 1324 and generalizations
Other patterns

T(k—1)s+m

Tks+3
Tks+2

Tks
T(k—1)s+3
T (k—1)s+2
" Tks+1

T (k—1)s+1

The cluster posets are towers of posets
like this one.

Linear extensions of this poset are in
bijection with certain generalized Dyck
paths, whose OGF is B(x).
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Exact enumeration The pattern 1324 and generalizations
Other patterns

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for w,(u, z).
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for w,(u, z).

Conjecture
For o = 1423, w1423(0, z) is not D-finite.

(i.e., it does not satisfy a linear diff. eq. with polynomial
coeffs.)
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for w,(u, z).

Conjecture

For o = 1423, w1423(0, z) is not D-finite.

(i.e., it does not satisfy a linear diff. eq. with polynomial
coeffs.)

The would be the first known instance of a pattern
with this property.
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Monotone and related patterns
Non-overlapping and related patterns

Exact enumeration The pattern 1324 and generalizations
Other patterns

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have recurrences
for the cluster numbers, but no closed form or diff. eq. for w,(u, z).

Conjecture
For o = 1423, w1423(0, z) is not D-finite.
(i.e., it does not satisfy a linear diff. eq. with polynomial ks
coeffs.)
The would be the first known instance of a pattern p ko ks +1
with this property. !
Equivalent to showing that S(x) defined by ke +1
ki +1
X X
S(x)=1+ S is not D-finite.
(x) 1+ x (1 - x2>
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Analytic results
Asymptotic behavior

. . . Dpen problems
Analytic results and asymptotic behavior (@pm (it

wy(u, z) is usually entire. ..

Theorem (E.-Noy '11)

Suppose that Ja > 0 s.t. all cluster posets w.r.t. o of size n
contain a chain of length > an. Then, for every fixed u € C,
wgy(u, z) is an entire function of z.
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Analytic results
Asymptotic behavior

. . . Dpen problems
Analytic results and asymptotic behavior (@pm (it

wy(u, z) is usually entire. ..

Theorem (E.-Noy '11)

Suppose that Ja > 0 s.t. all cluster posets w.r.t. o of size n
contain a chain of length > an. Then, for every fixed u € C,
wgy(u, z) is an entire function of z.

This applies to
» all chain patterns,
» all patterns with o4 =1,

» all non-overlapping patterns.
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Proof idea

Intuition: Posets containing a large chain have few linear
extensions.

Bounding the number of linear extensions of the cluster posets,

Z ok < Qnpn—an
k
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Analytic results and asymptotic behavior (@pm (it

Proof idea

Intuition: Posets containing a large chain have few linear
extensions.

Bounding the number of linear extensions of the cluster posets,

Z ok < Qnpn—an
k
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Analytic results

Asymptotic behavior
. . . Dpen problems
Analytic results and asymptotic behavior (@pm (it

Proof idea

Intuition: Posets containing a large chain have few linear

extensions.
Bounding the number of linear extensions of the cluster posets,

Z ok < Qnpn—an
k

1/n

= R,(t,z) =3 raxt“Z; is entire as a function of z

(has oo radius of convergence)

= wy(u,z) is entire as a function of z
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.but not always

The previous theorem shows that w,(u, z) is entire for all classes of
patterns of length 4 except possibly 2413.
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Asymptotic behavior
. . . Dpen problems
Analytic results and asymptotic behavior (@pm (it

.but not always

The previous theorem shows that w,(u, z) is entire for all classes of
patterns of length 4 except possibly 2413.

Proposition (E.-Noy '11)

w2413(2, z) is not entire.
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Analytic results and asymptotic behavior

.but not always

The previous theorem shows that w,(u, z) is entire for all classes of
patterns of length 4 except possibly 2413.

Proposition (E.-Noy '11)

w2413(2, z) is not entire.
Intuition: some cluster posets have too many linear extensions.

T5¢—3
T50—1
i T5e+1
el —
T50—2

T5¢
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Asymptotic behavior

Proposition (E. '05)

For every o, the limit

1/n
po = lim <a"(0)> exists.

n!
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Asymptotic behavior

Proposition (E. '05)

For every o, the limit
1/n
po = lim <a"(0)> exists.

For some o, p, is known exactly. For other o it can be estimated.
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Asymptotic behavior

Proposition (E. '05)

For every o, the limit

1/n
po = lim <a"(0)> exists.

n!
For some o, p, is known exactly. For other o it can be estimated.

Theorem (Ehrenborg-Kitaev-Perry '11)

For every o,

Oznn(!a) =7p" 4+ 0(6"),

for some constants v and 6 < p.
The proof uses methods from spectral theory.
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A conjecture

Conjecture (E.-Noy. '01)

For every o € Sy, there exists ny such that

an(o) < ap(12...m)

for all n > nq.
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A conjecture

Conjecture (E.-Noy. '01)

For every o € Sy, there exists ny such that

an(o) < ap(12...m)

for all n > nq.

This is equivalent to p, being largest for o0 = 12... m.
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A conjecture

Conjecture (E.-Noy. '01)
For every o € Sy, there exists ny such that

an(o) < ap(12...m)

for all n > nq.

This is equivalent to p, being largest for o0 = 12... m.

Theorem (E.-Noy. '11)

The above conjecture holds if o is non-overlapping.
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Proof sketch

Let 0 € S;, be non-overlapping. Want to show: p, < p12..m-
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Proof sketch

Let 0 € S;, be non-overlapping. Want to show: p, < p12..m-
Write w,(2z) := ws (0, z).
Using singularity analysis and the fact that w,(z) and w1z, m(z) are
entire, we get

» p- 1 is the smallest zero of w,(z).

1 .
> pls m is the smallest zero of wis m(z).
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Proof sketch

Let 0 € S;, be non-overlapping. Want to show: p, < p12..m-
Write w,(2z) := ws (0, z).
Using singularity analysis and the fact that w,(z) and w1z, m(z) are
entire, we get

» p- 1 is the smallest zero of w,(z).

1 .
> pls m is the smallest zero of wis m(z).

15

Enough to show that

wi2..m(z) < ws(2)

for 0 < z < 1.276.

025 05 07 i o

Consecutive patterns in permutations



Analytic results
Asymptotic behavior

. . . Dpen problems
Analytic results and asymptotic behavior (@pm (it

Proof sketch

Enough to show that w1z m(z) < ws(z) for 0 < z < 1.276.

ij+1 Zzm zm+1 z2m
wi2..m(z E E <l-z+—— + ,

| | |

J>0 = (m+1 m (m+1)! (2m)!

k(m—1)+1 m 2m—1

z z z

wy(z) =1-z— E (—1)kdk ;> 1—z+—|—d27|.
=t (k(m—1)+1)! m! (2m—1)!

This is proved showing that the terms of these alternating series
decrease in absolute value.
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Proof sketch

Enough to show that w1z m(z) < ws(z) for 0 < z < 1.276.

sz+1 zm  zmtl z2m
1_ -
wi2..m(z Jgo Jgo Gm+1 <l-z+ m! (m+1)! +(2m)!7
Using d> < (2'"_ 3) and algebraic manipulations — A
k(m—1)+1 m 2m—1
z z z
=1-—2z—Y (=1)kd >1l-z+" —dhb——
wa(z) 4 ;( ) k(k(m*1)+1)! z+m! 2(2m—1)!

This is proved showing that the terms of these alternating series
decrease in absolute value.
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Last-minute update

Proved while preparing this talk:
» For every o € S, there exists ng s.t.
ap(o) < ap(l2...m)

for all n > ny. (This is the [E.-Noy. '01] conjecture.)
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Last-minute update

Proved while preparing this talk:
» For every o € S, there exists ng s.t.
ap(o) < ap(l2...m)
for all n > ny. (This is the [E.-Noy. '01] conjecture.)
» For every non-overlapping o € S, there exists ng s.t.

ap(123...(m—2)m(m — 1)) < ap(o) < a,(134...m2)

for all n > nyg.
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Open problems

» Find a proof of the Ehrenborg-Perry-Kitaev Theorem
an(o)/nl =~p" + 0(6")

using analytic combinatorics (rather than spectral theory)?
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Open problems

» Find a proof of the Ehrenborg-Perry-Kitaev Theorem
an(o)/nl =p" + O(6")
using analytic combinatorics (rather than spectral theory)?

» Find a combinatorial proof of the fact that for all 0 € S,
ap(o) < ap(12...m), by giving an injection from o-avoiding
permutations to 12... m-avoiding permutations.
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Open problems

» Find a proof of the Ehrenborg-Perry-Kitaev Theorem
an(o)/nl =p" + O(6")
using analytic combinatorics (rather than spectral theory)?

» Find a combinatorial proof of the fact that for all 0 € S,
ap(o) < ap(12...m), by giving an injection from o-avoiding
permutations to 12... m-avoiding permutations.

» Conjecture (Nakamura '11): For every o € S, there exists ng

s.t.
an(123...(m — 2)m(m — 1)) < an(o)

for all n > ng.
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Analytic results and asymptotic behavior

Thank you
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