On the distribution of amicable numbers

By Carl Pomerance at Athens

§ 1. Introduction Let o(n) denote the sum of the divisors of n. Two integers a, b are
said to be an amicable pair if

g(@)=a(b)=a+b.
We say an integer # is amicable if it is a member of an amicable pair, or equivalently
o(o(n)—n)=a(n).

Amicable numbers have a very old history dating back at least to Pythagoras who was
aware that 220 and 284 form an amicable pair. We now know of more than 1100 amicable
pairs [11], but it is not known if there are infinitely many.

Let A(x) denote the number of amicable numbers up to x. In 1954, Kanold [9]
showed that

A(x) <.204x

for all sufficiently large x. In 1955, Erdos [4] (also see [5]) proved that
Ax)=o0(x).

In 1973, Rieger [13] showed that

'1—“ &€
A(x)=0(x/(loglogloglog x)* )
for every ¢ >0. In 1975, Erdés and Rieger [6] proved that
A(x)=0O(x/logloglog x).

In this paper we prove there is a positive constant ¢ such that

1) A(x)=O0[x - exp(—c(logloglogx logloglog logx)%)] ,
so that in particular,
A(x)=O(x/(logloglogx)*)
for every k. It seems likely that (1) is still far from the truth about amicable numbers. In

fact, by examining numerical data, Bratley, Lunnon, and McKay [1] suggest that

Ax)= o(x%) .
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Our proof utilizes a result on primes in arithmetic progressions (see Theorem 1) and
the well-known work of P. Erdos on primitive abundant numbers. We take pleasure in
acknowledging a helpful conversation with Professor Erdds concerning Theorem 2.

§ 2. A note on primes in arithmetic progressions. Let k, / be integers with £ >0 and
(k,)=1. It is a well-known corollary of the prime number theorem for arithmetic
progressions that there is a constant 4, ; such that (p denotes a prime)

1
S(x, k, )= —_——
(e k) ,Ex, p ok

p=lk)

loglog x=4, ;+0O(1/log x).

We now prove a result which implies 4, , is bounded as k, / vary.

Theorem 1. There is an absolute constant C such that for all x=3 and all k, | with
k>0and (k, )= 1, we have

IS(x, k, DI < C.
Proof. Since

the theorem holds for x<é* with C any number at least 3. Now suppose x>e*. From
the Siegel-Walfisz theorem (see Prachar [12], Satz 8.3, p. 144), there is an absolute
constant A such that for all ¢ > ¢*

! o A1
pkylogt |  @k)log?t’

(2) TI(I, k’ 1)_

By partial summation, we have

s Lelakn- y"(’k')dz
PEXx, p X
@ Ry T Rk, k
—~n(xkl)+j 1:( I) j—(t;z’gdt.
X ek t
Now by (2) we have
1 A 1 A

1

. . . L t
Since we trivially have n(¢, k, ) <1 +-k—, we have

<t k, ) /1 1 3
< -~ — . —_
(5) 0=£ 3 dt<£<t2 +tk)dt<2'
Now since
x dt 1 ogk
L o®iogt ~ 0@ 8 H@y
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we have, using (2),

¢ (k) 1 logk = A dt
(6) dt— loglog x| < + o
ejk & ok) 8 o (k) ei @(k)tlog?t

<logk+ A
ok)  ko(k)

Hence (3), (4), (5), (6) imply
3 logk = A+1 A
Sk Dl<5 0 T To®m T ol

which completes the proof of Theorem 1.

Remark 1. Using a Brun-Titchmarsh estimate in (5) we can prove
1 log2k
S, k, )= +0 ( )
=56 T om

where p(k, ]) denotes the first prime p=/(k) and the implied constant is uniform for all
k,l, and x > k.

Remark 2. By a similar proof, Rieger [13] obtains
IS(x, k, )] = O(loglog 3 k)
uniformly forall x> 3, k, /.

Theorem 2. There is an absolute constant B such that if k, | are any integers with
(k, )=1, k>0 and if x=3, then the number, M(x), of n< x for which there is no prime
p =I(k) with p||n satisfies

() M (x) < Bx/(log x)'/*®.

Proof. Let N(x) denote the number of n< x which are not divisible by any prime
p=I[(k). Then it follows from Theorem 1 and Brun’s method that there is an absolute
constant B’ with

®) N(x)< B'x/(log x)!/*® for x3.

For a proof, one may follow the proof of Theorem 2. 3 in Halberstam and Richert [8],
using Theorem 1 at the proper place. In particular, the reader should compare (8) with
the second part of Corollary 2. 3. 2 in [8]. We remark that Landau [10], pp. 641-—669,
has an asymptotic formula for N(x) (also see Delange [2], Wirsing [15], and Williams
[14]). However the main advantage of (8) is the independence of the constant B’ from
the parameters &, /.

We now turn to the proof of (7). A positive integer f is called square full (or
powerful) if for every prime p either p t f or p?|f. If F(x) is the number of square full
numbers up to x, then a result of Erdos and Szekeres [7] gives

) F(x)~cx!/?

where ¢={(3/2)/{(3). Now every positive integer n can be written uniquely in the form
n=mf where m is square free, f is square full, and (m, f)=1. Then the number of
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n< x which have square full part > x'/? is at most
(10) )3 [i]q v Loow
roxnl f o [ ’

using (9). Now the number of n< x which have square full part f<x'/? and for which
there is no prime p = /(k) with p||n is at most (using (8) and assuming x=>9)

B'x B - 21/eW® 1
11 N = =< —.
( ) f§§1/2 (X/f)_ fézx:1/2 f(lOg(X/f))l/‘p(k) - (IOgX)I/(p(k) [sxt/2 f

Hence (7) follows from (10), (11), and the fact that, by (9), the sum of the reciprocals of
the square full numbers is finite.

1/2

§ 3. Abundant numbers. We note the following easy fact about the function o (n)/n:
if m|n and m # n, then
a(m) _o(n)
m n

Hence it follows that if # is abundant (o (n)/n>2), then
a=inf{d:d|n, o(d)/d=2}

is such that o(a)/a=2 and if d|a, d+a, then o(d)/d<2. Such an integer a is called
primitive abundant. We have thus observed that every abundant number has a primitive
abundant divisor.

If P(x) denotes the number of primitive abundant numbers up to x, then a result
of Erdos [3] is that

(12) P(x)=0[x - exp(—c, (log x loglog x)'/?)]
for some positive constant ¢, . We are thus able to prove

Theorem 3. The number of abundant numbers up to x which have no primitive
abundant divisor <y is

O[x - exp(—c, (logy loglogy)'/?)]
where c, is a positive constant.

Proof. If n<x is abundant and has no primitive abundant divisor <y, then n
has a primitive abundant divisor >y. If a denotes a primitive abundant number, it
follows that the number of such » is at most

1
13) > [i‘-]<x > .
a>y a a>y a
Theorem 3 follows from (12) and (13) by an easy argument.

§ 4. Amicable numbers. We begin with the elementary observation that if «, v is an
amicable pair with u<uv, then u is abundant and v=0(u)—u is deficient (o(v)/v<2).
We now prove our main result:

Theorem 4. The number of amicable numbers up to x is
O [x - exp (—c; (logloglog x loglogloglog x)'/2)]

where c; is a positive constant.
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Proof. 1t follows from the remark above that the number of amicable numbers up
to x is at most twice the number of abundant amicable numbers up to x plus the number
of perfect numbers up to x. It follows from (12) that the number of perfect numbers up
to x is negligible. (Better estimates than (12) are available for the number of perfect
numbers up to x, but we do not need them here.)

Suppose # < x is an abundant amicable number. It follows from Theorem 3 that we
may assume n has a primitive abundant divisor a< (loglog x)'/2. Since a(n)—n is
deficient it follows that a ¥ o(n). Hence there is no prime p= ~— 1(a) with p||n. Thus from
Theorem 2, the number of #< x such that a|n and a ¥ a(n) is less than

B(xja)
(log (x/a))*/*

Hence the number of abundant amicable numbers up to x which are divisible by a
primitive abundant number a < (loglog x)'/? is less than

Bx b 1
=0 T 2T = 1/2
ag]og%gx)m a(log (x/a))"7* ((log x)(loglog =)~ 7 2 a ) O (x/exp (loglog x)'/?),
using the fact that, by (12), the sum of the reciprocals of the primitive abundant numbers
is finite. This completes the proof of Theorem 4.

We remark that with a little extra care, the constant ¢; of Theorem 4 may be taken
to be (1 —¢)¢,, for any ¢ > 0 where c, is the constant in (12).

Added in proof. K. K. Norton has kindly informed me that a more general
formulation of Theorem 1 appears in his recent paper “On the number of restricted
prime factors of an integer. I””, Illinois J. Math. 20 (1976), 681—705. He also points out
that the estimate (8) can be obtained without sieve methods by using certain results
of Halasz or Hall cited in his paper.

I wish to thank Dr. Norton for these comments and also for correcting my
formulation of Remark 1.

Concerning the true order of magnitude of A4(x), P. Erdés in [4] and in a private
communication conjectures that for each &> 0 and k there is an x, (¢, k) such that

xI7t< A(x)<x/logtx for all x>x,(e k).
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