THE QUADRATIC SIEVE FACTORING ALGORITHM

by

Carl POMERANCE
Department of Mathematics '
University of Georgia
Athens, Georgia 30602 USA

The quadratic sieve algorithm is currently the method of choice to factor very
large composite numbers with no small factors. In the hands of the Sandia National
Laboratories team of James Davis and Diane Holdridge, it has held the record for the
largest hard number factored since mid-1983. As of this writing, the largest number
it has cracked is the 71 digit number (107! -1) /9, taking 9.5 hours on the Cray
XMP computer at Los Alamos, New Mexico. In this paper I shall give some of the
history of this algorithm and also describe some of the improvements that have been
suggested for it.

KRAITCHIX'S SCHEME

There is a large class of factoring slgorithmsthat share a common strategy.
If N is the number to be factored, then the idea is to multiply congruences
U=V mod N, where U #V and complete or partial factorizations (depending on the
algorithm) have been obtained for U and V, so as to produce a special congruence
X2 =2Y2 mod N. Then one stands a good chance that the greatest common factor
(Xx-Y, §N), found by Euclid's algorithm, is a non-trivial factor of N, If it is not,
then another combination of congruences can be tried. Thus these algorithms have

several parts :
(1) Generation of the congruences U =V mod N,

(2) Determination of the complete or partial factorizations of U and V for

some of the congruences,

(3) Determination of a subset of the factored congruences which can be

multiplied to prcduce a special congruence X2 =Y2 mod N,

(4) Computaticn of (X-Y, N).

* supported in part by a grant from the National Science Foundation.

T. Beth, N. Cot, and I. Ingemarsson (Eds.): Advances in Cryptology - EUROCRYPT 84, LNCS 209, pp. 169-182, 1985.
© Springer-Verlag Berlin Heidelberg 1985

170

For example, say we try to factor N =91 and we notice that
81 =-10, 90 =-1, 75 =-16, and 6h =-27.

Factoring these numbers completely we have

3% 2-2.5, 2.32.5 =-1, 3.52 =-2% and 26 =-33.

Multiplying the last two congruences , we have

26.3,52 521&,33 .
or cancelling common factors,

22.52 =32,

This gives 102 232 mod 91 and 7T =(10-3,91). Or we might have multiplied the first
two congruences, getting
2.36.5 22.5 —36 =21,

so 272212 mod 91 and 13 =(27-1,91).

This general scheme for factoring was published by Kraitchik [4] im 1926. The
numbers U,V are factored into primes except for squared factors. Since most of
the congruences one is likely to generate will not successfully factor im step (2),
one's chances are enhanced if one of U,V is arranged to be a square and the other
has a large square factor. In [5], pp. 26~27, Kraitchik explains how this should be
done. He lets U =x? where x is carefully chosen so that V =-N+x2 has a large
factor yz. He can force y2 +to appeer by choosing x as a solution of the quadra-
tic congruence x2 =N mod y2. However, V/y? need not be small and so easily facto-—

rable., This method has its problems.

Kraitchik opportunistically used other congruences U =Vmod N that were
suggested by the special form of N in question . These congruences would not be
available for a "random" N. In his later work [5], the congruences U =Vmod N
were used to assist in finding X end Y with X2-Y? =N, This is an old factoring
strategy that goes back to Fermat. I think Kraitchik preferred this method for two
reasons. First, fewer congruences U =V med N with multiplicative information about
U and V are used. Second, when X,Y are found with X2-Y2 =N, one could be assured
of a non-trivial factorization of N, unlike with the other method where step (I)
may produce & trivial factorization. Little 4id Kraitchik know that his largely

abandoned method of producing "cycles" (the combination of congruences in step (3))

would be the basis of most modern factoring algorithms !

171

THE CONTINUED FRACTION ALGORITHM

Instead of finding U 2V mod N with one of U,V a square and the other divi-
sible by a large square factor, another strategy might be to choose one a square
and the other small in absolute value. It thus would more likely factor in step (2).
In 1931, Lehmer and Powers [6] suggested the use of the continued fraction expansion
of VN to generate the congruences U zV mod N in Kraitchik's scheme. This is

done by a simple recursive procedure that creates pairs Q‘n’ An where

= a2
(1) Qn-AnmodN

and Iin <2/N. An 0ld method of Legendre also suggested the use of the continued
fraction expansion of /I—\I-, but his aim was to use the congruences (1) to find infor-—
mation on the quadratic character mod Qn of prime factors p of N. Then a direct
search, such as trial division, could be greatly speeded up because many potential
divisors would not have the proper character. In contrast, Lehmer and Powers advo-
cated multiplying several congruences of the form (1) to produce congruent squares.
Morrison and Brillhart [10] were the first to try the continued fraction algo-
rithm on & modern computer. In the implementation they made several major improve—
ments and refinements that would be of use in any of the combination of congruences
family of algorithms. First, they used a "factor base", or all of the primes to scme
point F, to dermine which of the congruences (1) were useful. When a congruence (1)
was generated, the number O‘n was subjected to trial division by the primes p <F.
If a complete factorization could be obtained, the congruence was kept for later use

-if not, it was discarded.

Step (3) of the algorithm, the actual combination of congruences was effected
by a Gaussian elimination in a very large matrix over Z/2%. Specifically, if the

factor base consists of the primes Pys=++sPp and if

ao f ai
Qn = {-1) .H Pi
1=1
where the a, are non-negative integers, then we look at the vector

>
v(n) = (ao,a1,...,a) mod 2.

f
-+ - . 13 - -
If we have enough vectors v{n), then Gaussian elimination will produce a linear

dependency

> -> >
v(n1) +o.t v(nk) =0,

so that Qn e Q is a square, say X2%. If we compute X mod N and
1 =
Y :An1 . Ankmod N, then X2 =Y2mod N and we are ready for step (4).

172

Another improvement, called the "early abort strategy" was described in [11].
This improvement extended the useful range of the continued fraction algorithm on
an ordinary main frame computer by about 10 digits —from the mid L0's to the mid

50's (see [14], [12]1).

A special purpose, low cost processor has been designed by J.W. Smith and
8.8, Wagstaff, Jr. and built at the University of Georgia to implement the continued
fraction algorithm with the early abort strategy. It is designed to do the trial
division step on a Qn in parallel (several trial divisors can be tried at onee)
and the device has extended precision, so that this arithmetic done with long in-=
tegers can be done in single precision. It should be fully operational soon and we ‘
await their results. It will probably be somewhat inferior to the results produced
by the Sandia team, butihis should be weighed by the fact that the cost of the Smith-
Wagstaff device is about three orders of magnitude less than the cost of a Cray
XIMP,

THE MILLER -WESTERN ALGORITHM

The issue of Mathematiecs of Computation which contains the Morrison-Brillhart
paper is dedicated to D.H. Lehmer and has many interesting articles on computational
number theory. In this issue there is an article by J.C.P. Miller [7] on factoring
that also uses congruences U =V mod N. He attributes the idea to A.E. Western. The
aim is to find congruences with U and V completely factored. But rather than
combine these congruences to produce congruent squares, each congruence is read as
a linear relation of indices with respect to some primitive root g of p, where
p 1s a prime factor of N. When enough congruences can be found there is a chance
of finding p via created congruences of the form s.t =1 mod N. If some qlt can
be found with at/q #1 mod K, then perhaps (at/q-1 , N} 1is a non-trivial factor of
N.

I see no particular advantage to this method over just combining the factored
congruences to produce congruent squares in the Kraitchik scheme. I mention the
algorithm here because of the very simple way Miller chooses the congruences
U=V mod N. Namely he just partitions N as A+B, letting U =A, V=-B. There is
an interesting unsolved problem of Erdds that says that for each e >0 there is an
No(e) such that for each integer N >No(e) there is a partition of N as A+B
where no prime in A B exceeds N°. What we need is an algorithmic solution of
Erdds's problem that gives many such pairs A,B. Perhaps this problem (and factoring

itself) is not so hard !

173

SCHROEPPEL'S ASYMPTOTIC ANALYSIS

In the late 1970's some important advances on factoring were made by Richard
Schroeppel. He never published his results, but they have become known through copies
of his letters and through second hand published accounts {e.g. [8]1, [11]). First,
Schroeppel began the systematic study of the asymptotic running time of factoriza-
tion algorithms in the Kraitchik family. Second, he found an algorithm in the family

where step (2) could be accomplished without time consuming trial division.

Schroeppel's asymptotic anelysis hinged on the optimsl choice of the parameter’
F, the upper bound for the primes in the factor base. A small choice of F means
only few factored congruences are necessary to produce a linear dependency, but such
congruences are very hard to find. With a large choice of F the situation is re-
versed. Somewhere between "large'" and "small" is the optimal choice. Schroeppel
realized that to study this situation asymptotically one needed to use the function
¥{x,y) -the number of integers up to x divisible by nc prime exceeding y. Speci-
fically this was needed with x being the average size of the residues being trial
divided and y =F. Thus {x,y)/x represents the "probability" that a residue will

completely factor over the factor base.

For example, suppose we study the continued fraction slgorithm. Then the ty-
pical Qn will be approximately ¢N. Further, if f is the number of primes in the
factor base, then we should have f SF/2 logF (only those odd primes p with
(N/p) =1 can divide a Qn). We need to obtain about f completely factored Qn's.

Thus we should expect to have to generate
£ (/AE VT = £/R/V A, F)

values of Qn before enough factored ones are found. More, we need to do about T
trial divisions on the average Qn produced, so the total number of trial division

steps needed to factor N with the continued fraction algorithm should be about
£2/W/p(V/N,F).

Ignoring other steps in the algorithm, we thus choose F so as to minimize this
quantity. Schroeppel assumed that
1-¢

w(x,xuu)/x = \1_(1+O(1))1’1 for (log x)% <u <(log x)

(a result which was subsequently proved in [1]) and found that the optimal choice
ot F is ()R e
L(N) = exp{Ylog N log log N)

N)v/5+o(1)

{natural logs) and that the expected running time is L . Of course, this
argument is only heuristic -for one, it is assumed without proof that the numbers

Qn factor over the primes to F as frequently as random numbers of the same

174

approximate size.

SCHROEPPEL'S LINEAR SIEVE

Schroeppel's new algorithm with by-passed trial division is also in Kraitchik's

family. Let ‘
, S(A,B) = (L/N]+A)(L/F)+B) ~N
2)
T(A,B) = (L/NJ+A)(L/F]+B).
1/2+e

If |Al, |B| are less tham N°%, then |S(A,B)| %2N so that the S(A,B) are
relatively small, not much larger than the Qn's given by (1). More, we evidently
have

S(A,B) = T(A,B) mod ¥

so that we use these as the congruences in Kraitchik's scheme. We attempt to comple-
tely factor the S(A,B)'s over a factor base, but we do not try to factor the
T(A,B)'s. Note that (2) already gives a partial factorization of T(A4,B). We could
thus arrange for a product of T(A,B)'s to be a square if each A and each B is
used an even number of times in the product. Thus we ireat the variables A,B as if

they were primes in the Gaussian elimination step.

Thus the Gaussian elimination step is harder and the residues S(A,B) are a
bit larger than in the continued fraction algorithm. There is an advantage here,
though, and it is that the numbers S(A,B) can be factored without trial division.
The idea is that for a fixed value Ao for A we can let B run over consecutive
integers. These numbers form an arithmetic progression, so that if plS(Ao,Bo), then
piS(Ao,Bo+p), plS(AO,Bo+2p), etc, That is, we know beforehand exactly which values
of B have S(AO,B) divisible by p. No more do we need to waste a trial division

step on a number where the trial divisor does not go.

Schroeppel's asymptotic analysis suggested the running time of his algorithm
1+0(1)
was L(N)

tion. This is not a mistake in the continued fraction algorithm analysis because it

. However, his analysis neglected the time for the Gaussian elimina—

really takes less time than the trial division step. But in Schroeppel's algorithm
we have given the Gaussian elimination a larger task to accomplish and it can be
shown (heuristically) that it takes L(N)3/2+°(1) steps, worse than the running

time of the continued fraction algorithm.

THE QUADRATIC SIEVE

In 1981 I suggested taking A =B 1in Schroeppel's linear sieve algorithm,
calling the resulting method the quadratic sieve algorithm, This simple move changes
things drastically. Let

(3) Q(A) = S(A,A) = (L/RJ+A)2 -N.

175

Thus we are back in the game of producing quadratic residues as in the continued
fraction algorithm, so the Gaussian elimination step should not be a major diffi-
culty. In addition, we can still sieve as Schroeppel did. If plQ(Ao), then
plQ(Ao""p), pIQ(Ao+2p), etc. This property of the function Q(A) follows from the
fact that it is a polynomial with integer coefficients. Heuristically, the running
time for the algorithm is L{N) 9/ +O(1), including tﬁe matrix step, an improvement
over the continued fraction algorithm. This analysis and a description of the algo-—
rithm is found im [11].

The idea in (3) is to choose A with [A] <N®. Since for small A we have

Q(a) =~ 2A/F,

/2+E, as with Schroeppel. It is amusing to note that the

We thus have |Q(A)| ,§2N1
method (3) of choosing quadratic residues mod N is very similar to that of

Kraitchik discussed sbove. There is a difference though. Kraitchik carefully prepa-
red values of x so that x2-N had a large square factor. In {3) we indiscrimina-

tely choose all values of x near /N.

The advantage is clear, because now we can use a sieve, For each odd prime p
in the factor base (p is in the factor base if (N/p) =1) we solve the quadratic

congruence
(LYNJ+A)2 = N mod p,

labelling the solutions Agp), Aép) (for p=2, special treatment is required). We
then compute very crude logs of each of the Q(A) for A in a long interval (these
logs are all approximately equal). These logs are stored in an array indexed by the
values of A. We ther pull out each log that has its index A EAgp) or Aép) mod p
and subtract log p from the number in the location. (Again, log p is a low preci-
sion log). This is done for each p 1in the factor base and for some of the higher
powers of the smaller primes p. At the end, we scan the array for residual logs
that are close tc 0. These locations correspond to values of Q(A) that completely
factored. The number Q(A) may now be computed and factored by trial division. Of
course, very few numbers Q(A) completely factor, so the amount of trial division
in the algorithm is negligible. Note that not only does the quadratic sieve algo—
rithm have asymptotically fewer steps than the continued fraction algorithm, but
each step is simpler. In the quadratic sieve a typical step is a single precision
subtraction , while in the continued fraction algorithm a typical step is a divide

with remainder of a single precision integer into a long dividend.

Asymptotically, the algorithm of Schnorr and Lenstra [13] (which is not in the
Kraitchik family) should be faster than the quadratic sieve : its heuristic run time
is L(N)Ho“). However it has not yet proved computer practical and the crossover
point may be very large. A typical step in the Schnorr -Lenstra algorithm is compo-—
sition of binary quadratic forms with multi-precision entries and finding a reduced

form in the class.

176

THE DAVIS VARTATION

Davis and Holdridge [2] have written a very clear article on the implementa-
tion of the quadratic sieve algorithm and there is no need to duplicate their work
here. But I would like to mention an important .improvement Davis made oh the method.
It seems clear that the quadratic sieve algorithm majorizgs the continued fraction
algorithm in every respect but in the size of the quadratic residues. Namely, in the
latter method, each Iin is less than 2/N but in the former, the numbers [Q(A)l

1/2+¢

are about N (where € >0 1is small and tends to 0 slowly as N —»w=), Of

course, the larger the residue, the less likely it is to factor over the factor base.

The Davis variation is simply to sieve over various aritlmetic progressions of
A's so that the Q(A)'s are guaranteed to have a fixed factor. Specifically, if p
is some large prime not in the factor base and pIQ(AO) where Q <Ao <p, then p

divides every Q(A0+Ap) as noted before, Let
QP(A) = Q(A_+ap).

Then
Q (A)/p & 2A/N,

so that after the known factor p is divided out of QP(A)’ the cofactor is about
the same size as Q(A). Thus instead of having just one polynomial to work with, we
have a large family of polynomials -one {in fact, two) for each possible p. For
each p used we consider p as a new prime in the factor base. Thus if k facto-
red values of QP(A) are found, after eliminating p we have k-1 vectors left
over the original factor base. However, Davis avoids losing even one vector. He

does this by finding a factored QP(A) for "free". This magic is accomplished as
follows. If in the original polynomiazl Q(A) a location A1 is found after sieving
where the residual log is not near O, but less than 2 logF, then the cofactor after
Q,(A1) is divided by all primes in the factor base is a prime p with F <p <F2, We
thus use this p to form QP(A) (and we can choose Ao EA1 mod p). We start with
one factored value before sieving the new polynomial, so any new factored values
found are all to the good.

THE MONTGOMERY VARIATION

Independently of Davis, Peter Montgomery [9] has come up with another strategy
for fighting the drift to infinity of the quadratic residues Q(A). His method
tailor makes polynomials to custom fit not only the number N to be factored, but

the length of the interval we sieve over before we change polyncmials.

177

Suppose we sieve over intervals of length 2M before we change polynomials.

We are looking for polynomials

F(x) = ax2+2bx+c where K|b?-ac,
for then
(4) aF(x) = a2X2+2abx+ac = (ax+b)? - (b2-ac)
{ax+b)2 mod N.

i

Further, we would like the values of F(x) to be small in absolute value on an
interval of length 2M. It thus seems reasonable to center this interval on the

vertex of the parabola F(x) -so we specify the interval as
I = (-b/a-M, -b/a+M)

and choose a,b,c so that
-F{-b/a) = F(-b/a-M) = F{-b/a+M),

To be specific, we choose a,b,c so that
(5) b2-ac = N .

Then from (4),
-aF(-b/a) = N, aF(~-b/a-M) = aF(-b/a+M) = aZM2-N,

Thus we should choose a so that N =a?M2-N, i.e.,
(&) a s~ Y2N/M.

Montgomery suggests then that we decide first on 2M, the length of the interval
sieved. Next an integer a is chosen satisfying (6) and then integers b and c
are found satisfying (5). (For example, we could choose a as a prime satisfying
(N/a) =1. Then the quadratic congruence b2 =N mod a is solved for b 'and c¢ is
chosen as (b2-N)/a).

We thus have constructed a quadratic polynomial F(x) so that on the interval

IF(x)] s — M/A.
i

This is better than the polynomials Q{A) and Qp(A)/p. For them on the interval
(-M,M) their absolute values are bounded by 2M/YN. Thus the largest of Montgomery's
residues are about 272 times smaller and so somewhat more likely to factor over

the factor base.

Here is an idea which should improve Montgomery's basic plan. If k 21 values
of F(x) are found which factor over the factor base, we only end up with k-1
vectors because the factor a must be eliminated from the congruences (4). This
could be serious if the expected value of k were much smaller than 1, for then in

the rare instances we had k >0, it would be likely that k =1 and nothing would

178

be gained. To solve this problem, we choose a =g? where g is a prime with
(N/g) =1 and g =vV2N/M, Then everything is as before, but we do not have to elimi-
nate a from (4) because it is a square. All factored values of F(x) are now to

the good.

The quadratic congruence
(1) b2 = N mod g2

can be solved very simply if g =3 med 4 and (N/g) =1. Just take

2_
o = nBTTERME g2,

This involves arithmetic mod g2. Instead, by first solving (7) mod g by taking
b1 EN(gﬂ)/hmod g and next determine x so that (b1+xg)2 =N mod gz, all of the
arithmetic can be done mod g. (This idea was suggested by Wagstaff -it is an elemen-

tary application of Hensel's lemma).

Above we chose a satisfying (6) to minimize the maximum value of |[F(x)| on
I. Instead, it may be more appropriate to minimize the average value of |F(x)l|.
For this we should choose

a ~ (1.5127453)/E/M.

However, it probably makes very little difference whether we choose a by this
scheme or by (6).

In the implementation of Montgomery's variation (which has not yet been done)
one should compute how costly it is to produce new polymomials F(x). If it is very
costly, a larger value should be chosen for M ; if it is not so costly, & smaller
value should be chosen for M. That is, we should sieve over as short an interval
as possible, where the overhead of producing new polynomials and computing the

starting points for each prime used in the sieve says it should not be oo short.

LARGE PRIME VARIATION

In [11] the large prime variation was suggested for the gquadratic sieve. This
variation is commonly used with the continued fraction algorithm. As mentioned
above, if the residual log after sieving is not close to 0, but less than 2 logF,
then we have produced a guadratic residue that completely factors over the factor
base except for one large prime factor p with F <p <F2, Not cnly do we receive
this information for free,but such residues are simple to process. If the large
prime p 1is never seen again in another factored residue, it is useless for us and
this line may be discarded. If it appears % times, we can eliminate it, being
left with k-1 vectors over the factor base. The "birthday paradox" suggests that

the event k 32 will not be that uncommen.

178

If this method is used together with the Davis variation, another method
should be used to produce the polynomials Q_(A). We can instead use (7). Let
g >F be a prime with g=3 mod L and (N/g) =1. If b 1is the solution of (T),
we let Ao =b-L/ﬁ:[mod gz. Then we can use the polynomial

Qg2(a) = ala +a?s)
in the Davis variation. (We can also use Ao = -b-1vmod g2).
Every value factored over the factor base is useful and we can use the large prime
variation on all of the ng(A) for various choices of g2. Note that there is less

overhead with producing the polynomials ng(A) than the P{x) in Montgomery's

variation because g can be chosen smaller with Davis.

SMALL MODULI

In trial division it takes just as long to test divisibility by 3 as by 101.

But sieving by 3 takes 101/3 times Zonger than 101 since it has more frequent "hits'l
Thus a considerable percentage of sieving time is spent with the very smallest mo-
duli. This seems a waste since these small moduli contribute the least information.
One idea is to skip sieving with them completely. Say we do not sieve with any modu-
lus below 30. Then if 3 is in the factor base, for example, we will not sieve mod 3,
mod 9, nor mod 27. But we will sieve mod 81, subtracting U log3 (instead of

log 3) at hits for this modulus. If P is the product of the highest powers of the
moduli skipped and if P <F, then we lose nothing by this strategy. Indeed, the ma-
ximal error introduced in skipping the small moduli is at most log P <log F. Thus
if the residual log is less than log F the number has factored completely and

every completely factored number will have a residual log less than log F.

If this idea proves good, one might "live dangerously" and let P be somewhat
bigger than F. In fact if we let P be around F2 and use the large prime varia-
tion too, the only residues lost will be some of the residues which factored with a

large prime. Of course, you may prefer not to lose anything.

USE OF A MULTIPLIER

The factor base for N in the quadratic sieve algorithm consists of those
primes pgF witk p=2 or (N/p) =1. If we replace N by AN where A 1is a
small positive square-free integer (Xraitchik again -see [4], p. 208 and [5], Ch. 2)
then the factor base changes. The expected contridbution to log{x®-A N) by the
power of p in xZ-A N is

Ep = (2 logp)/(p-1)

if x 1is a random integer and (A N/p) =1. For p=2 the expected contributicn is

180

lgloge, if A N=3 mod b

E, =4 log?2 , if A NzZ5 mod 8
2log2 , if A NZ1 mod 8.

If plX the expected contribution Ep is (log p)/p. Thus we wish to choose the
value of A 50 as to maximize the function '

F(A,N) = - 2 loglhl + | E
psF

vhere the sum is over those primes p sF with p=2, (A N/p) =1, or pli. This
function is very similar to one associated with the continued fraction algorithm
(see [3], p. 391, Ex. 28 or [12]).

SPECTAL PURPOSE PROCESSORS

J.W. Smith, S.S. Wagstaff, Jr., and I have discussed the feasibility of
building a special purpose processor to implement the quadratic sieve algorithm. We
are encouraged by the prospects. For a budget of perhaps £25,000in parts, we believe
a "quadratic siever" could be built that would rival a Cray in speed. For ten or
twenty times as much money a machine could be built that could factor 100 digit

pumbers in a month. Perhaps these figures are way off, it is hard to tell unless
one tries.

The basic idea of the "guadratic siever" would be to comstruct a sequence of
16x bK units each of which would sieve over an interval of length 4096, The largest
moduli {fastestthrough the sieve) would be started one after the qther through the
sequence of units., There would never be interference of moduli because we have let
the fastest racers start first.

Another idea is to use many unextraordinary computers each using a different

bvatech of polynomials with one central computer which is fed the factored residues.

With all of these ideas we may begin to approach the 100 digit level in facto-
ring. But 150 digit numbers should be about 100,000 times harder and 1t seems clear
that current methodolcgy is insufficient for factoring such huge numbers. However,
until someone proves that factoring nust be hard, there will always be some doubt
about the security of R SA. When R SA was introcduced L0 digit numbers were consi-
dered hard to factor, while now we are doing 7O digit numbers and talking about

100 digit numbers. As always, the future is hard to predict.

181

ACKNOWLEDGEMENTS

I would like to thank the Département de Mathématiques-Informatique at the
U.E.R. des Sciences de Limoges for their hospitality while this paper was written.
T would also like to thank H.J.J. te Riele for helping me track down the Kraitchik
references and Peter Montgomery for his kind pemissioz;. to describe his improvement

to the quadratic sieve alogorithm.

REFERENCES

f1] E.R, Canfield, P. Erd3s and C., Pomerance, On a problem of Oppenheim

concerning "Factorisatio Numerorum", J. Number Theory, 17 (1983), 1-28.

[2] J.A. Davis and D.B. Holdridge, Factorization using the quadratic sieve
algorithm, Sandia Report Sand 83-1346, Sandia National Laboratories, Albuquergue,
New Mexico, 1983,

[31] D.E. Knuth, The Art of Computer Programming, vol. 2, Seminumerical
Algorithms, 2%¢ edition, Addison Wesley, Reading, Mass., 1981,

R'S] M. Kraitchik, Théorie des Nombres, Tome II, Gauthier-Villars, Paris,
1926,

(51 M. Kraitchik, Recherches sur la Théorie des Nombres, Tome II, Factorisa-

tion, Gauthier-Villars, Paris, 1929.

[61 D.H. Lehmer and R.E. Powers, On factoring large numbers, Bull. Amer.
Math. Soc. 37 (1931), TT0-TT6.

£71 J.C.P. Miller, On factorisation with a suggested new approach, Math.
Comp. 29 (1975), 155-172.

[81 L. Monier, Algorithmes de factorisation d'entiers, thése de 3¢ cycle,
Orsay (1980).

{91 P. Montgomery, private communication.

{10] M.A., Morrison and J. Brillhart, A method of factoring and the factoriza-—
tion of F'T’ Math. Comp. 29 (1975), 183-205.

f11] C. Pomerance, Analysis and comparison of some integer factoring algori-
thms, in Computational Methods in Number Theory, H.W. Lenstra, Jr. and R. Tijdeman,
eds., Math. Centrum Tract 154 (1982), 89-139,

182

[12] C. Pomerance and S.S. Wagstaff, Jr., Implementation of the continued
fraction algorithm, Cong. Numerantium 37 (1983), 99-118.

[13] C.P. Schnorr and H.W., Lenstra, Jr., A Monte Carlo factoring algorithm

with finite storage, preprint.

[14] M.C. Wunderlich, A report on the factorization of 2797 numbers using

the continued fraction algorithm, unpublished manuscript.

