MATH 20C: FUNDAMENTALS OF CALCULUS II EXAM \#2

Problem 1. Find the area of the region between $y=x^{2}$ and $y=3 x-2$ from $x=0$ to $x=2$. Graph the area of this region.

Solution. We have:

The curves cross when $x^{2}=3 x-2$, or $x^{2}-3 x+2=(x-2)(x-1)=0$, so $x=1$ or $x=2$. Thus the area is

$$
\begin{aligned}
\int_{0}^{1}\left(x^{2}-(3 x-2)\right) d x+\int_{1}^{2}\left((3 x-2)-x^{2}\right) d x & =\left.\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right)\right|_{0} ^{1}+\left.\left(\frac{3 x^{2}}{2}-2 x-\frac{x^{3}}{3}\right)\right|_{1} ^{2} \\
& =\left(\frac{1}{3}-\frac{3}{2}+2\right)-0+\left(6-4-\frac{8}{3}\right)-\left(\frac{3}{2}-2-\frac{1}{3}\right)=1
\end{aligned}
$$

Problem 2. Evaluate the integral

$$
\int x^{-2} \ln x d x
$$

Solution. We use integration by parts, with $u=\ln x$ and $v=x^{-2}$.

	D	I
+	$\ln x$	x^{-2}
$-\int$	$1 / x$	$-x^{-1}$

So

$$
\int x^{-2} \ln x d x=-x^{-1} \ln x-\int \frac{1}{x}\left(-x^{-1}\right) d x=-\frac{\ln x}{x}+\int x^{-2} d x=-\frac{\ln x}{x}-\frac{1}{x}+C .
$$

Problem 3. Evaluate the integral

$$
\int_{0}^{\pi} 3 \cos (2 x) d x
$$

Solution. We substitute, with $u=2 x$ so that $d u=2 d x$ or $d x=d u / 2$. When $x=0$ we have $u=0$ and when $x=\pi$ we have $u=2 \pi$. So

$$
\int_{0}^{\pi} 3 x \cos (2 x) d x=\int_{0}^{2 \pi} \frac{3}{2} \cos (u) d u=\left.\frac{3}{2} \sin u\right|_{0} ^{2 \pi}=0-0=0
$$

Problem 4. The amount of drug in the body of a laboratory rat at time t is given by $D(t)=3 e^{-0.2 t}$ where D is in cubic centimeters (cc's) and time t is in hours. What is the average amount of drug in the rat's body over the first 5 hours?

Solution. The average is

$$
\frac{1}{5-0} \int_{0}^{5} 3 e^{-0.2 t} d t=\left.\frac{3}{5} \frac{e^{-0.2 t}}{-0.2}\right|_{0} ^{5}=-3\left(e^{-1}-1\right)=3(1-1 / e) \approx 1.896
$$

Problem 5. Determine if the following given improper integral converges or diverges. If it converges, calculate its value.

$$
\int_{2}^{\infty} \frac{2}{x^{4}} d x
$$

Solution. We have

$$
\int_{2}^{\infty} \frac{2}{x^{4}} d x=\lim _{M \rightarrow \infty} 2 \int_{2}^{M} x^{-4} d x=\left.\lim _{M \rightarrow \infty} 2 \frac{x^{-3}}{-3}\right|_{2} ^{M}=\lim _{M \rightarrow \infty}-\left.\frac{2}{3 x^{3}}\right|_{2} ^{M}=\lim _{M \rightarrow \infty}\left(-\frac{2}{3 M^{3}}+\frac{2}{24}\right)=\frac{1}{12}
$$

and the integral converges.
Problem 6. The oil from offshore drilling produces a continuous stream of income of $R(t)=1000-50 t$ dollars per year for t years. The revenue is deposited daily into a savings account bearing interest at a rate of 5%. Find the future value of the income stream after the first 20 years of operation.

Solution. We have

$$
F V=\int_{0}^{20}(1000-50 t) e^{0.05(20-t)} d t=\int_{0}^{20}(1000-50 t) e^{-0.05 t+1} d t
$$

We use integration by parts:

	D	I
+	$(1000-50 t)$	$e^{-0.05 t+1}$
-	-50	$\frac{e^{-0.05 t+1}}{-0.05}=-20 e^{-0.05 t+1}$
$+\int$	0	$400 e^{-0.05 t+1}$

Thus

$$
\begin{aligned}
F V & =\left((1000-50 t)\left(-20 e^{-0.05 t+1}\right)+50\left(400 e^{-0.05 t+1}\right)\right)_{0}^{20} \\
& =0+50(400)-((1000)(-20 e)+50(400) e)=20000
\end{aligned}
$$

