
MATH 20C: FUNDAMENTALS OF CALCULUS II
EXAM #2

Problem 1. Find the area of the region between y = x2 and y = 3x − 2 from x = 0 to x = 2. Graph the
area of this region.

Solution. We have:
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The curves cross when x2 = 3x− 2, or x2 − 3x+ 2 = (x− 2)(x− 1) = 0, so x = 1 or x = 2. Thus the area is∫ 1
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Problem 2. Evaluate the integral ∫
x−2 lnx dx.

Solution. We use integration by parts, with u = lnx and v = x−2.
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Problem 3. Evaluate the integral ∫ π

0

3 cos(2x) dx.

Solution. We substitute, with u = 2x so that du = 2 dx or dx = du/2. When x = 0 we have u = 0 and when
x = π we have u = 2π. So∫ π
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Problem 4. The amount of drug in the body of a laboratory rat at time t is given by D(t) = 3e−0.2t where
D is in cubic centimeters (cc’s) and time t is in hours. What is the average amount of drug in the rat’s body
over the first 5 hours?
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Solution. The average is
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= −3(e−1 − 1) = 3(1− 1/e) ≈ 1.896.

Problem 5. Determine if the following given improper integral converges or diverges. If it converges,
calculate its value. ∫ ∞
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and the integral converges.

Problem 6. The oil from offshore drilling produces a continuous stream of income of R(t) = 1000 − 50t
dollars per year for t years. The revenue is deposited daily into a savings account bearing interest at a rate
of 5%. Find the future value of the income stream after the first 20 years of operation.

Solution. We have

FV =
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We use integration by parts:

D I
+ (1000− 50t) e−0.05t+1

− −50
e−0.05t+1

−0.05
= −20e−0.05t+1

+
∫

0 400e−0.05t+1

Thus

FV =
(
(1000− 50t)(−20e−0.05t+1) + 50(400e−0.05t+1)

)20
0

= 0 + 50(400)− ((1000)(−20e) + 50(400)e) = 20000.

2


