
MATH 195: TAKE HOME FINAL

JOHN VOIGHT

Problem A1. Alice, Bob, Chris, and Eve communicate over a public network.
They encrypt all messages they send using the RSA system. Bob and Chris have the
same public modulus nB = nC , but different public encryption exponents: eB 6= eC .

(a) Show how Bob can decipher all messages sent to Chris.
(b) Suppose that gcd(eB , eC) = 1, and that Alice sends the same secret message

to Bob and to Chris. Show how Eve can decipher the message.

Solution. For (a), since Bob knows nB = nC = n, he knows the factorization
n = pq and φ(n) = (p−1)(q−1). (This is how n is constructed, starting from p, q.)
By the (extended) Euclidean algorithm, Bob can compute dC = e−1

C (mod φ(n)),
and thereby decrypt all messages. (It also suffices to do this computation modulo
` = lcm(p− 1, q − 1).)

Note: The algorithm which given m such that am = 1 (mod n) for all n factors
n is not applicable in this situation: it is far too slow!

For (b), note that since gcd(eB , eC) = 1, there are integers mB ,mC such that
eBmB + eCmC = 1. Therefore given the encrypted messages yB = xeB (mod n)
and yC = xeC (mod n) for plaintext x, Eve computes

ymB

B ymC

C = xmBeB+mCeC = x (mod n).

Eve does this without ever computing dB or dC !

Problem A2.
(a) How many monic irreducible polynomials in F5[X] of degree 3 are there?
(b) Given an explicit construction of the field F125.
(c) Pick, in the field that you constructed in (b), an element that does not

belong to F5, and compute its inverse.

Solution. For (a), we use the formula from class: We let

an(p) = #{f ∈ Fp[X] : f monic, irreducible, deg f = n}.
We then have:

an(p) =
1
n

∑
d|n

µ(d)pn/d

where µ(d) is the Möbius function (0 if d is divisible by a square, otherwise (−1)r

if d is the product of r distinct primes). From this we find

a3(5) =
1
3

∑
d|3

µ(d)5n/d =
1
3
(53 − 5) = 40.
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It is a theorem that if f(X) is an irreducible polynomial of degree 3 over F5,
then F5[X]/(f(X)) is a field of 53 = 125 elements. It suffices to find one of these
40 irreducible polynomials. The polynomial f(X) = X3 + X + 1 has no roots (try
successively X = 0, 1, . . . , 4); if it were reducible, it would have to have a linear
factor (hence a root), so it is irreducible. Therefore

F125 ' F5[X]/(X3 + X + 1).

For (c), we compute X−1. One can do this using the extended Euclidean algo-
rithm, or by solving the equation X(aX2 + bX + c) = 1 (mod X3 + X + 1) for
a, b, c, but here is a simpler method: since X3 + X + 1 = 0, we have

−(X3 + X) = X(−X2 − 1) = 1.

Therefore X−1 = −X2 − 1.

Problem A3. Let the elliptic curve E over F2 be defined by the equation

y2 + y = x3 + x.

(a) List all points of E(F2).
(b) Make a table showing P + Q for all P,Q ∈ E(F2). Explain how you made

the table. (Avoid performing too many additions.)
(c) How many elements does E(F4) have?

Solution. For (a), we have the points E(F2) = {(0, 0), (1, 0), (0, 1), (1, 1)} ∪ {O}.
For (b), we note that E(F2) is a group, so since it is of prime order it is cyclic.

It suffices to compute the powers of a single generator P = (0, 0). We first use the
negative formula:

−P = (x,−y − a1x− a3) = (x, y + 1);

This says that −(0, 0) = (0, 1) = 4P (since 5P = O, this is a group of order 5) and
−(1, 0) = (1, 1). We now only need to decide which of these is 2P and which is 3P .

We compute 2P : Let f = y2+y+x3+x. Then the tangent line to f at P = (0, 0)
is obtained by implicitly differentiating f with respect to x:

2y
dy

dx
+

dy

dx
+ 3x2 + 1 = 0

so
dy

dx

∣∣∣∣
(0,0)

= x2 + 1
∣∣
(0,0)

= 1.

This line goes through P = (0, 0), so it is y = x. This line intersects E at

x2 + x + x3 + x = x3 + x2 = x2(x + 1) = 0

so also at x = 1, and hence y = x = 1. We then take its negative, which is the
point 2P = (1, 0).

Therefore 2P = (1, 0), and we have an isomorphism

E(F2) ' Z/5Z = 〈P 〉 = {O, (0, 0), (1, 0), (1, 1), (0, 1)}.
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This gives us the following table:

+ O (0, 0) (1, 0) (1, 1) (0, 1)
O O (0, 0) (1, 0) (1, 1) (0, 1)

(0, 0) (0, 0) (1, 0) (1, 1) (0, 1) O
(1, 0) (1, 0) (1, 1) (0, 1) O (0, 0)
(1, 1) (1, 1) (0, 1) O (0, 0) (1, 0)
(0, 1) (0, 1) O (0, 0) (1, 0) (1, 1)

For (c), we invoke Hasse’s theorem (second version) from class:

#E(F2n) = 2n + 1− tn

where tn = πn + πn for some π ∈ C with |π| =
√

2. This gives us the equations
ππ = 2 and

π + π = 2 + 1−#E(F2) = −2

for which we find π2 + 2π + 2 = 0, or π = −1± i. Therefore

#E(F4) = 4 + 1− ((−1 + i)2 + (−1− i)2) = 5 + 0 = 5.

Note that all of the points of E(F4) are defined over F2!

Problem B1. This problem is about a monoalphabetic cipher. Throughout, the
English alphabet is identified with Z/26Z by A = 0, B = 1, . . . , Y = 24, Z = 25.
The encryption function is

ε : Z/26Z → Z/26Z
ε(x) = αx + β (x ∈ Z/26Z)

for certain secret numbers α, β ∈ Z/26Z. For example, if α = 5 and β = 10 then
H is encrypted as T , because H = 7 and ε(7) = 5 · 7 + 10 = 19 = T .

Suppose now that a very long English plaintext is encrypted by means of the
cipher, and that W is the most frequent letter in the ciphertext.

(a) What is probably the third most frequent letter in the ciphertext? [Use the
table of letter frequencies from the textbook.]

(b) Suppose that B is the second most frequent letter in the ciphertext. What
are the most likely values for α and β?

(c) Suppose that α, β are as you guessed in (b). Show that to decrypt a ci-
phertext it suffices to encrypt it twice in succession. [If you guessed wrong
in (b) this may be false. In that case, change your guess.]

Solution. The most frequently used letter is E = 4, and since W = 22, we guess
that ε(4) = 4α + β = 22. The third most frequently used letter is R = 17, so we
wish to find the value of ε(17) = 17α + β (mod 26). Notice that

17α + β ≡ 4α + β ≡ 9 (mod 13)

so already ε(17) = 9 or 22, but the latter cannot occur since the map ε is a bijection.
Therefore the most frequent letter in the ciphertext is likely to be J = 9.

For (b), we note that the second most frequently used letter is T = 19, since
W = 22 and B = 1, we guess that ε(4) = 22 and ε(19) = 1. This gives the two
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equations

4α + β = 22
19α + β = 1

Subtracting these gives 15α = −21 = 5 (mod 26), so since 15−1 = 7 (mod 26)
(you can compute this using the Euclidean algorithm, or by trying out values),
α = 7 · 5 ≡ 9 (mod 26). Therefore β = 22− 36 ≡ 12 (mod 26), and ε(x) = 9x+12.

For (c), we need to show that ε−1(x) = ε2(x), i.e. ε3(x) = x. This is easily
verified:

ε3(x) = 9(9(9x + 12) + 12) + 12 = 729x + 1092 ≡ x (mod 26).

Problem B2. Let F256 = F2[X]/(X8 +X4 +X3 +X +1), and let B : F256 → F256

be the substitution used by Rijndael (see the class notes on the web page, 04/02/02–
04/04/02). Find elements u, v ∈ F256 with B(u) = v and B(v) = u. [You may
want to use a computer for this purpose.]

Solution. First, we define A : {f ∈ F2[X] : deg f < 8} to itself by

A(f) ≡ (X4 + X3 + X2 + X + 1)f + (X6 + X5 + X + 1) (mod X8 + 1).

We define B : F256 → F256 by

B(a) =

{
A(a−1), a 6= 0, a−1 computed in F256;
A(0), a = 0.

The following Maple script will compute this encipherment:
# This function takes as input a number n = 0..255, converts it
# to binary and then a polynomial by
# n = b7...b0 |-> b7*X^7 + ... + b0 = f.
# It then computes the Rijndael function
# B(f) = A(f^(-1)) (unless f = 0, and then B(0)=A(0))
# where
# A(f) = (X^4+X^3+X^2+X+1)f + (X^6+X^5+X+1) mod(X^8+1).
# It returns the decimal value of the answer using the bijection
# defined above.
# To see the intermediate output, uncomment the print lines.

m := X^8 + X^4 + X^3 + X + 1:

rijn := proc(p) local b,f,s,t,i,n;
n := p mod 256;

# Convert number to polynomial
f := 0;
for i from 1 to 8 do
f := f + ((n mod 2^i) - (n mod 2^(max(i-1,0))))/

2^(i-1)*X^(i-1);
od;

# print(f);
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# Compute inverse by the extended Euclidean algorithm
if ( f <> 0 ) then
gcdex(f,m,X,’s’,’t’);
f := s mod 2;

fi;
# print(f);

# Compute Alpha
f := rem((X^4+X^3+X^2+X+1)*f + X^6+X^5+X+1,X^8+1,X) mod 2;

# print(f);

# Convert back to decimal
b := subs(X=2,f);
b;

end:

The following script will then find a 2-cycle:

for n from 0 to 255 do
if( rijn(rijn(n)) = n ) then
print(n);

fi;
od;

The output is 115, 143, which corresponds to the polynomials

115 = 73 = 01110011 = X6 + X5 + X4 + X + 1

and

143 = 85 = 10000101 = X7 + X3 + X2 + X + 1.

We verify this by hand: We compute

(X6 + X5 + X4 + X + 1)−1 = X7 + X2 + 1

and

A(X7 + X2 + 1) = X7 + X3 + X2 + X + 1

and similarly

(X7 + X3 + X2 + X + 1)−1 = X7 + X5 + X2

and

A(X7 + X5 + X2) = X6 + X5 + X4 + X + 1.

In fact, one can compute the complete cycle decomposition; to find the cycle
containing 0 and its order, we list:

C0 := [0];
while ( op(nops(C0),C0) <> op(1,C0) or nops(C0) = 1 ) do
C0 := [op(C0),rijn(op(nops(C0),C0))];

od:
C0 := [op(1..(nops(C0)-1),C0)];
nops(C0);
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This outputs the 59-cycle:

(0, 99, 251, 15, 118, 56, 7, 197, 166, 36, 54, 5, 107, 127, 210, 181, 213, 3, 123, 33, 253,

84, 32, 183, 169, 211, 102, 51, 195, 46, 49, 199, 198, 180, 141, 93, 76, 41, 165, 6,

111, 168, 194, 37, 63, 117, 157, 94, 88, 106, 2, 119, 245, 230, 142, 25, 212, 72, 82)

Using the command sort(C), we see that the next value is 1, which belongs to
an 81-cycle:

(1, 124, 16, 202, 116, 146, 79, 132, 95, 207, 138, 126, 243, 13, 215, 14, 171, 98, 170, 172,

145, 129, 12, 254, 187, 234, 135, 23, 240, 140, 100, 67, 26, 162, 58, 128, 205, 189,

122, 218, 87, 91, 57, 18, 201, 221, 193, 120, 188, 101, 77, 227, 17, 130, 19, 125, 255,

22, 71, 160, 224, 225, 248, 65, 131, 236, 206, 139, 61, 39, 204, 75, 179, 109, 60, 235,

233, 30, 114, 64, 9)

We repeat to get the following remaining cycles, of length 87 and 27:

(4, 242, 137, 167, 92, 74, 214, 246, 66, 44, 113, 163, 10, 103, 133, 151, 136, 196, 28, 156,

222, 29, 164, 73, 59, 226, 152, 70, 90, 190, 174, 228, 105, 249, 153, 238, 40, 52, 24,

173, 149, 42, 229, 217, 53, 150, 144, 96, 208, 112, 81, 209, 62, 178, 55, 154, 184, 108,

80, 83, 237, 85, 252, 176, 231, 148, 34, 147, 220, 134, 68, 27, 175, 121, 182, 78, 47,

21, 89, 203, 31, 192, 186, 244, 191, 8, 48)

and

(11, 43, 241, 161, 50, 35, 38, 247, 104, 69, 110, 159, 219, 185, 86, 177, 200, 232, 155, 20,

250, 45, 216, 97, 239, 223, 158).

Note that 59 + 81 + 87 + 27 = 254, the numbers remaining from these lists,
115, 143, form the lone 2-cycle.

Problem B3. Let p = 216 + 1 = 65537. This is a prime number (you do not need
to prove this).

(a) What is the order of 3 in the group F∗
p? Is 3 a primitive root modulo p?

(b) What is the order of 2 in the group F∗
p? Prove that log3 2 is divisible by 211.

(c) Compute log3 2. Which method do you use? Show your work.

Solution. Notice that p − 1 = 216. Therefore if we check that 3215 6≡ 1 (mod p),
then the order of 3, which divides 216 (because it is the order of the group), does
not divide 215 (by this calculation), so it must be equal. (Recall this is a special
case of a theorem from class regarding the prime divisors of p− 1.)

By repeated squaring, we compute

32 = 9, 34 = 92 = 81, . . . , 3211
= −32, . . . , 3215

≡ −1 (mod p).

Therefore 3 is indeed a primitive root, and has order 65536.
For (b), note that again the order of 2 divides 216, so it is the smallest integer

such that 22m ≡ 1 (mod p). Since 216 ≡ −1 (mod 216 +1), and all other values are
too small, we conclude that 2 has order 32. Let m = log3 2: then 3m ≡ 2 (mod p).
But we just found that 32 is order of 2, so

(3m)32 = 332m ≡ 232 ≡ 1 (mod p).
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Therefore the order of 3 divides 32m, hence 216 | 25m, or 211 | m = log3 2.
For (c), one can compute the discrete logarithm using baby step-giant step, or

by using the Pollig-Hellman technique. We opt for an ad hoc method, involving
trickery (forgive us, please): by repeated squaring in the above, we found that
3211

= −8 = −23. We also know that 216 ≡ −1 (mod 65537), so

3211
≡ 21623 = 219 (mod 65537).

Recall that the order of 2 is 32, so we compute 19−1 ≡ 27 (mod 32), and

(3211
)27 = 327·211

≡ (219)27 ≡ 2 (mod 65537).

This says that log3 2 = 27 · 211 = 55296.

Problem B4. Analyse the complexity of the Pohlig-Hellman method for computing
discrete logarithms (see the class notes on the web page, 04/18/02–04/25/02). More
precisely, give upper bounds both for the number of bit operations performed by the
algorithm and for the number of operations in the group. These upper bounds
should be expressed as functions of the numbers m1, m2, . . . , mt that form part of
the input. (Do keep the Important note on the cover page in mind.)

Solution. First, we analyze baby step-giant step:
(1) Pick a positive integer M with M2 ≥ m = ord(g), e.g. d

√
me.

(2) Compute
h, hg, hg2, . . . , hgM−1

(the baby steps) and

gM , g2M , . . . , gM2

(the giant steps).
(3) If we find two elements in common, then hgi = gjM , so h = gjM−i and

logg h = jM − i, and otherwise logg h doesn’t exist.
This requires no more than M − 1 group operations for the baby steps. For the

giant steps, we use repeated squaring to compute gM , which requires no more than

2k = 2b log M

log 2
c

group operations. We then require M − 1 group operations to fill out the powers,
for a total of no more than 2M + 2 log M/ log 2 operations. Finally, to compare
lists, keeping the lists sorted gives us a comparison which takes time no more than
2M bit operations (we go once through one list and keep track of where we are on
the other).

Now the Pohlig-Hellman method runs as follows:
(1) Compute m′ = m1m2 . . .mt−1 = m/mt.
(2) Use the baby step-giant step method (or complete enumeration) to find

a = loggm′ hm′
. If it doesn’t exist, then logg h doesn’t exist either, and the

algorithm stops.
(3) Compute hg−a.
(4) Use the Pohlig-Hellman method with input

G, gmt , m′ = m1m2 . . .mt−1, hg−a,
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to compute b = loggmt (hg−a). Output logg h = mtb + a if b exists, and if it
does not, then the logg h does not exist either.

The first step requires t− 1 bit operations. Baby step-giant step requires

2d
√

mte+ 2b
log

√
mt

log 2
c

group operations and 2d√mte + 1 bit operation by the above, since gm′
has or-

der mt. For the third step, by repeated squaring, since a ≤ mt, we get this in
(log mt/ log 2) + 1 group operations. The total for Pohlig-Hellman in one round is

2d
√

mte+ 2
log mt

log 2
+ 1

group operations and t+2
√

mt bit operations. Note that we do not need to repeat
the first step if we store the multiplicands m1,m1m2, . . . ,m1m2 . . .mt−1.

Therefore repeating on this input, we get a total of 2
∑

i

√
mi = O(maxi

√
mi)

bit operations, and no more than(
2

t∑
i=1

d
√

mie

)
+ 2

log m

log 2
+ t = O(max

i

√
mi)

group operations.

Problem B5∗. Let the Hamming weight

W : F256[Y ]/(Y 4 + 1) → {0, 1, 2, 3, 4}

be as defined in class; that is, if

a =
∑3

i=0aiY
i ∈ F256[Y ]/(Y 4 + 1),

with ai ∈ F256, then
W (a) = #{i : ai 6= 0}.

(a) Let c ∈ F256[Y ]/(Y 4 + 1) be such that the map

M : F256[Y ]/(Y 4 + 1) → F256[Y ]/(Y 4 + 1)

defined by M(a) = c · a satisfies M = M−1. Prove that there exists a ∈
F256[Y ]/(Y 4 + 1), a 6= 0, such that W (a) + W (M(a)) < 5. [Note: if you
use the theorem stated about this in class, prove it.]

(b) Discuss the implications of the result of (a) for the design of Rijndael.

Solution. The condition (a) says that M2 acts as the identity, i.e. c2 ≡ 1 (mod Y 4+
1). That implies that if c = c0 + c1Y + c2Y

2 + c3Y
3 then

c2
0 + c2

1Y
2 + c2Y

4 + c3Y
6 ≡ (c2

0 + c2
2) + (c2

1 + c2
3)Y

2 (mod Y 4 + 1).

Therefore (c0 + c2)2 = 1, so c2 = c0 + 1, and (c1 + c3)2 = 0, so c3 = c1. Therefore
c is of the form c = c0 + c1Y + (c0 + 1)Y 2 + c1Y

3.
(Note that this fails our theorem from class, because the coefficients c3/c1 = 1 =

c1/c3 are equal. We will not use this, though.)
We find W (a) + W (M(a)) ≤ 4. It is enough to look for W (a) = 2 such that

M(a) = a. This is like a previous homework problem: we could do it via equations
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(which is a bit tiresome!), but rather, we represent the matrix M : F4
256 → F4

256 on
the basis

1 = (1, 0, 0, 0), Y = (0, 1, 0, 0), Y 2 = (0, 0, 1, 0), Y 3 = (0, 0, 0, 1)

as

M =


c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0


since, for instance,

M(1, 0, 0, 0)t = (c0, c1, c2, c3) = c = c · 1.

Now recall that c3 = c1 and c2 = c0 + 1. We look for an element fixed by this
matrix, which is the eigenspace corresponding to the eigenvalue 1. We want to find
the nullspace of

M − I = M + I =


c0 + 1 c1 c0 + 1 c1

c1 c0 + 1 c1 c0 + 1
c0 + 1 c1 c0 + 1 c1

c1 c0 + 1 c1 c0 + 1


which is row equivalent to

c0 + 1 c1 c0 + 1 c1

c1 c0 + 1 c1 c0 + 1
0 0 0 0
0 0 0 0


and then by adding the second row to the first, we obtain (assuming c0+c1+1 6= 0)

1 1 1 1
c0 + 1 c1 c0 + 1 c1

0 0 0 0
0 0 0 0


which simplifies to 

1 1 1 1
0 1 0 1
0 0 0 0
0 0 0 0


This gives the eigenspace (a0, a1, a0, a1). For example, 1 + Y 2 = (1, 0, 1, 0) is such
an element, and we verify

(c0 + c1Y + (c0 + 1)Y 2 + c1Y
3)(1 + Y 2) = 1 + Y 2.

The implication for Rijndael is that a choice of c such that c2 ≡ 1 (mod Y 4 +1)
has reduced security: the diffusion requirement for a cryptosystem requires that

d(w,w′) + d(M(w),M(w′)) ≥ 5.

Equivalently, for all v = w + w′ 6= 0, we insist that

W (w+w′)+W (M(w)+M(w′)) = W (w+w′)+W (M(w+w′)) = W (v)+W (M(v)) ≥ 5.

Such a choice for M fails this condition.



10 JOHN VOIGHT

Problem B6∗.
(a) Let r be a prime number, and let n be a positive integer for which (Z/nZ)∗

has an element of order r. Prove: n is divisible by r or by a prime number
that is 1 (mod r).

(b) Use (a) to prove the following theorem, which was stated without proof in
class:

Theorem. Let r be a prime number, and let k be an integer satisfying
0 < k ≤ r. Then the number kr + 1 is a prime number if and only if there
exists an integer a satisfying ak ≡ 1 (mod kr+1) and akr ≡ 1 (mod kr+1).

Solution. Recall that (Z/nZ)∗ has order φ(n), where

φ(n) =
∏
pe‖n

pe−1(p− 1)

which is to say that if n = pe1
1 . . . pet

t , then

φ(n) = pe1−1
1 (p1 − 1) . . . pet−1

t (pt − 1).

In particular, (Z/nZ)∗ is a group, so if it has an element of order r, then r | φ(n).
Since r is prime, this implies that r = pi for some i, so then r | n, or r | pi − 1 for
some i, hence pi ≡ 1 (mod r), which is the second case. This proves the claim in
(a).

For (b), we note that the element ak has order r. Since (ak)r = akr ≡ 1 (mod n)
by assumption, the order of ak divides r; but this is prime, so since ak 6≡ 1 (mod n),
ak cannot have order 1 so it has order r. By part (a), since r - n = kr + 1, this
implies that n = kr + 1 is divisible by a prime number which is 1 (mod r). In
particular, p > r. Therefore p = ar + 1 for some positive integer a, but p divides
n = kr + 1, so bp = kr + 1. Multiplying the first by b and subtracting we obtain

b− 1 = (k − ab)r

so b ≡ 1 (mod r). Therefore b = 1, and p = kr + 1 = n is prime, or b > r, so
kr + 1 > pr, which since p > r implies k > r, a contradiction.

Problem B7∗. Let f ∈ F7[X] be a cubic polynomial with nonzero discriminant,
and let the elliptic curves E1 and E2 over F7 be defined by

E1 : y2 = f(x), E2 : y2 = −f(x).

(a) Prove: #E1(F7) + #E2(F7) = 16.
(b) Let f = X3 + 4. Compute #E1(F7).
(c) Construct an elliptic curve E over F7 such that E(F7) has a point of order

13.

Solution. First, note that −1 is not a square in F7. You can check this directly by
squaring all of the elements. (Another way: #F∗

7 = 6, so there is no element of
order 4 in this multiplicative group: a squareroot of −1 would give such an element,
which is impossible.)

For each x ∈ F7, consider the value f(x). If f(x) = 0, then we have (x, 0) as a
point on both curves. If f(x) is a square, then we have the two points (x,±y) on
E1 for such a squareroot y. Otherwise, −f(x) must be a square. One can check
this directly by listing the possibilities in a table, for example, 3 is not a square
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but −3 = 4 = 22 is, −1 is not a square but −(−1) = 1 is. Therefore we obtain two
(distinct) points on E2. Since for each of the 7 values of x we get 2 points on one
or both curves, we get a total of 14; together with the points at infinity, they total
to 16.

For (b), we compute that E1(F7) = {(0,±2)} ∪ {O}. We see that x = 0 gives
y2 = 4, so y = ±2, and for all other valuse x = 1, 2, . . . , 6, we obtain f(x) = 3 or
f(x) = 5, which are not squares. Therefore #E1(F7) = 3.

Therefore E2 : y2 = −X3 − 4 is an elliptic curve with #E2 = 13. Since any
group of prime order is cyclic, any non-identity element is a point of order 13.

Problem B8∗. This is an open-ended problem on Mersenne primes. A Mersenne
number is a number of the form 2p−1 where p is a prime number, and a Mersenne
prime is a Mersenne number that is prime.

Investigate what is known about Mersenne primes. In particular: how does one
test whether a given Mersenne number is prime? what is the complexity of this
method? which are the known Mersenne primes? You may also cover other issues
if you like, such as the connection between Mersenne numbers and perfect numbers.

Express what you find in your own words, and do not turn in more than three
pages.

Solution. Many answers to this are possible. A clearinghouse for information on
Mersenne primes is available at the Great Internet Mersenne Prime Search (GIMPS)
Home Page:

http://www.mersenne.org/prime.htm.


