
MATH 250B: COMMUTATIVE ALGEBRA
HOMEWORK #4

JOHN VOIGHT

Problem 1. Let E be a finite-dimensional vector space over a field k. Let x1, . . . , xp

be elements of E such that x1 ∧ · · · ∧ xp 6= 0, and similarly y1 ∧ · · · ∧ yp 6= 0. If
c ∈ k and

x1 ∧ · · · ∧ xp = cy1 ∧ · · · ∧ yp

show that x1, . . . , xp and y1, . . . , yp generate the same subspace.

Solution. This reduces to the fact: z1 ∧ · · · ∧ zr = 0 if and only if the elements zi

are linearly dependent. After all, a dependence relation, say zr =
∑

i aizi, allows
us to write

z1 ∧ · · · ∧ zr =
∑

iz1 ∧ · · · ∧ (aizi) = 0

by the alternating property.
This implies that the elements xi ∈ E are linearly independent, as are the yj ∈ E;

suppose that the element yj is not in the span of the xi, which is to say, the elements
x1, . . . , xp, yj are linearly independent. Then x1 ∧ · · · ∧ xp ∧ yj 6= 0, but

cy1 ∧ · · · ∧ yp ∧ yj = 0

a contradiction. Therefore the subspace generated by the yj is contained in the
span of the xi; since both are spaces of dimension p, they are equal.

Problem 2. Let E be a free module of dimension n over the commutative ring
R. Let f : E → E be a linear map. Let αr(f) = tr

∧r(f), where
∧r(f) is the

endomorphism of
∧r(E) into itself induced by f . We have

α0(f) = 1, α1(f) = tr(f), αn(f) = det f,

and αr(f) = 0 if r > n. Show that

det(1 + f) =
∑
r≥0

αr(f).

[Hint: As usual, prove the statement when f is represented by a matrix with variable
coefficients over the integers.] Interpret the αr(f) in terms of the coefficients of the
characteristic polynomial of f .

Solution. First assume that R = k is an algebraically closed field. Then we can
choose a basis e1, . . . , en for E such that f is given in Jordan canonical form (see
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Theorem 2.4 in §XIV, for example), with diagonal elements α1, . . . , αn (not nec-
essarily distinct). Note the choice of basis does not affect the value of det(1 + f).
Then

det(1 + f) =
n∏

i=1

(1 + αi) =
∑

I⊂{1,...,n}

αI

where for I ⊂ S = {1, . . . , n} we denote αI =
∏

i∈I αi.
On the other hand, a basis for

∧r
E is given by ei1 ∧ · · · ∧ eir for i1 < · · · < ir;

by definition ∧r(f)(ei1 ∧ · · · ∧ eir
) = f(ei1) ∧ · · · ∧ f(eir

)

so since f in this basis is lower triangular,

tr
∧r(f) =

∑
i1<···<ir

αi1 . . . αir
.

Matching expressions, we obtain the desired result. Since by definition the charac-
teristic polynomial of f is Pf (t) = det(tI−f), we see that det(1+f) = (−1)nPf (−1).
From the Jordan decomposition, we have

Pf (t) =
∏

i

(t− αi) =
n∑

r=0

art
r =

n∑
r=0

(−1)rtr
∑
I⊂S

#I=n−r

αI ;

matching these two, we find that αr(f) = (−1)ran−r.
Now if A is a linear map given by a matrix A = (xij)i,j with indeterminate

coefficients over Z, then performing the above computation in an algebraic closure
of Q(xij)i,j , we see then that the result holds for A. Since the conclusion is then
an equality over Z[xij ] (concerning the characteristic polynomial), by the homo-
morphism Z[xij ] → R which takes xij 7→ fij , where f = (fij), we see that the
conclusion holds for any commutative ring R.

Problem 3. Let E be a finite dimensional free module over the commutative ring
R. Let E∨ be its dual module. For each integer r ≥ 1, show that

∧r
E and

∧r
E∨

are dual modules to each other, under the bilinear map such that

(v1 ∧ · · · ∧ vr, v
′
1 ∧ · · · ∧ v′r) 7→ det(〈vi, v

′
j〉)

where 〈vi, v
′
j〉 is the value of v′j on vi, as usual, for vi ∈ E and v′j ∈ E∨.

Solution. Let f :
∧r

E ×
∧r

E∨ → R be the above map; we need to show that f is
nonsingular, i.e. that the R-linear map

φ :
∧r

E → HomR(
∧r

E∨, R)

v1 ∧ · · · ∧ vr 7→
(
(v′1 ∧ · · · ∧ v′r) 7→ det(〈vi, v

′
j〉)

)
is an isomorphism. Let e1, . . . , en be a basis for E, and let e′1, . . . , e

′
n be the duals,

so that

〈ei, e
′
j〉 =

{
1, i = j;
0, else.

A basis for
∧r

E is given by wedge products es = es1,...,sr
= es1 ∧ · · · ∧ esr

.
Then the wedges e′s1,...,sr

= e′s1
∧ · · · ∧ e′sr

form a basis for
∧r

E∨, and a basis
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for HomR(
∧r

E∨, R) is given by the characteristic functions defined on basis vec-
tors as

χs(et) = χs1,...,sr (et) =

{
1, et = es;
0, else.

Inside this notational morass, we now easily compute that in fact φ(es) = χs,
since φ(es)(es) = 1 = det(〈esi , esj 〉)i,j), the determinant of the identity matrix, and
otherwise φ(es)(et) = 0. This shows that φ is an isomorphism.

Problem 4. Notation being as in the preceding exercise, let F be another R-module
which is free, finite dimensional. Let A : E → F be a linear map. Relative to the
bilinear map of the preceding exercise, show that the transpose of

∧r
A is

∧r(tA),
i.e. is equal to the rth alternating product of the transpose of A.

Solution. It suffices to verify (see Chapter XIII, §5) that for all es ∈
∧r

E and
fs ∈

∧r
F∨ that

〈Aes, ft〉 = 〈es,
tAft〉.

But after all,

〈
∧r(A)(es), ft〉 = det(〈Aesi

, ftj
〉) = det(〈esi

, tAftj
〉) = 〈es,

∧r(tA)(ft)〉;
the middle equality follows from the fact that tA : F → E is the transpose of A,
and by the preceding exercise, 〈, 〉 is nonsingular.


