
MATH 250B: COMMUTATIVE ALGEBRA
HOMEWORK #9

JOHN VOIGHT

Problem R1. Show that −1 is a square in Z5.

Solution. Although one can prove this directly, it is worth noting the following
general result:

Let f(x) ∈ Z[x], let p be a prime, and suppose that there exists α1 ∈ Z/pZ such
that f(α1) ≡ 0 (mod p) and f ′(α1) 6≡ 0 (mod p). Then there exists a unique root
α ∈ Zp of f satisfying α ≡ α1 (mod p).

Since Zp = lim←−n
Z/pnZ, giving a root α of f in Zp is equivalent to giving for each

n ≥ 1 a root αn ∈ Z/pnZ of f such that αn+1 ≡ αn (mod pn): then limn→∞ αn = α
is a root of f in Zp.

We prove the existence of αn by induction. We are given α1 ∈ Z/pZ. Given αn,
we lift it to αn+1 = αn + tpn ∈ Z/pn+1Z as follows: since

f(αn+1) = f(αn + tpn) ≡ f(αn) + tpnf ′(αn) (mod pn+1)

by Taylor expansion, and f(αn) ≡ 0 (mod pn), it is enough to solve

f ′(αn)t ≡ −f(αn)/pn (mod p)

for t which is possible (uniquely) because f ′(αn) ≡ f ′(α1) 6≡ 0 (mod p).
In our case, we may take α1 = 2 since f ′(2) = 4 (mod 5).

Problem R2. Let E be the set consisting of all nonnegative integers, together with
an extra element ∞. A supernatural number is a formal product

∏
p pep where the

product runs over all primes p and where the exponents ep are elements of E. If m

is a supernatural number, let mẐ be the intersection of the groups nẐ, taken over
positive integers n that divide m.

Show that the set of closed subgroups of Ẑ corresponds bijectively with the set of
supernatural numbers under the map m 7→ mẐ.

Solution. Let m be a supernatural number. We note that mẐ is indeed a closed
subgroup of Ẑ since it is the intersection of the open (by definition) hence closed
subgroups nẐ for n ∈ Z.

For each prime p and n ∈ Z>0, we have the projection map Ẑ→ Z/pnZ. These
maps are continuous (by definition) and are compatible in the sense that if n′ ≥ n,
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the diagram

Ẑ //

""DD
DD

DD
DD

D Z/pn′Z

��
Z/pnZ

commutes. By the property of projective limits, we obtain a continuous map Ẑ→
lim←−n

Z/pnZ = Zp. (In fact, the map Ẑ →
∏

p Zp is an isomorphism of topological
rings if the product is given the product topology.)

From this we see that the map m 7→ mẐ is injective: if m 6= m′, then there
exists a prime p such that ep 6= e′p (where m′ =

∏
p pe′

p), hence the images of mẐ
and m′Ẑ in Zp are different.

Let H be a closed subgroup of Ẑ. Since Ẑ is compact (it is a closed subset of∏
m Z/mZ in the product topology and each factor is discrete), the image of H

in Zp is compact; since Zp is Hausdorff (it is a subset of
∏

n Z/pnZ, each factor
again discrete), this image is closed. Let ep be the largest element of E such that
H ⊂ pepZp (we take ep = ∞ e.g. if H = {0}). This gives a map from the set of
closed subgroups of Ẑ to the set of supernatural numbers by H 7→

∏
p pep(H). It is

now easy to see that

mẐ 7→
∏

pp
ep(mẐ) = m

under this map; therefore the map m 7→ mẐ has a right inverse, so it is surjective
as well.

Problem R3. Let K and L be extensions of a field k inside a large field Ω (as in
Chapter VIII, §3). Is it true that K and L are linearly disjoint over k if and only
if the natural map K ⊗k L→ Ω is injective?

Solution. Yes, this statement is true. First suppose K and L are linearly disjoint.
Let

α =
∑

ixi ⊗ yi ∈ K ⊗k L

be any element. By k-bilinearity of the tensor product, we may assume that the xi

are linearly independent over k, for e.g. if xj =
∑

i αixi, then

xj ⊗ yj =
∑

ixi ⊗ (αiyj).

Then since K and L are linearly disjoint, the xi are linearly independent over L,
so if α 7→ 0 =

∑
i xiyi, we have yi = 0 for all i, hence α = 0.

Conversely, let x1, . . . , xn ∈ K be linearly independent over k. Suppose that
there exist yi ∈ L such that

∑
i xiyi = 0 ∈ Ω; then

∑
ixi⊗yi 7→ 0, so by injectivity,

we have
∑

i xi⊗yi = 0. Since xi ∈ K are linearly independent over k, the elements
xi ⊗ 1 ∈ K ⊗ L are linearly independent over L, a contradiction.

Problem R4. At the beginning of the proof of Theorem VIII.4.13, Lang says,
“From the hypotheses, we deduce that K is free from the algebraic closure La of L
over k.” How do we deduce this?
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Solution. Let x1, . . . , xn ∈ K be algebraically independent over k, in other words,
trdeg(k(x)/k) = n. We know that K is free from L over k, so trdeg(L(x)/L) = n.
We have the following diagram of fields:

L(x)
uuu CCC

L(x)
KKK

K L
yyy

y

L

By problem 3 (proven below, without using this result),

trdeg(L(x)/L) = trdeg(L(x)/L(x)) + trdeg(L(x)/L) = 0 + n = n

since trdeg(L(x)/L(x)) ≤ trdeg(L/L) = 0. So x1, . . . , xn are also algebraically
independent over L.

Problem 2. A subfield k of a field K is said to be algebraically closed in K if every
element of K which is algebraic over k is contained in k. Prove: If k is algebraically
closed in K, and K, L are free over k, and L is separable over k or K is separable
over k, then L is algebraically closed in KL.

Solution. If K is separable over k, then K/k is a regular extension, so by Theorem
4.13, KL/L is regular and in particular, L is algebraically closed in L.

So we suppose that L is separable over k. We may assume that L is finitely gen-
erated over k. Let x1, . . . , xn be a separating transcendence base for the extension
L over k, so that L is a finite separable extension of k(x) = k(x1, . . . , xn). Since
the xi are algebraically independent over k and L is free from K, we know that k is
algebraically closed in K(x), so k(x) is algebraically closed in K(x). We therefore
reduce to the case where L is a finite separable extension of k.

KL
sss EE

E

K(x)
xxx JJJ

L
{{{

K
HHH

H k(x)
sss

s

k

Suppose that α ∈ KL is algebraic over L. By the proof of Lemma 4.10, the
minimal polynomial of α over k remains irreducible over K, and hence is minimal.
But since L is separable over k, we have by Corollary 4.5 that KL is separable
over K, therefore the minimal polynomial of α must be separable over K, so α is
in fact separable over k. Therefore L(α) is finite and separable, so it is primitively
generated; by Lemma 4.10 we have

[L(α) : k] = [KL(α) : K] = [KL : K] = [L : k]

so L = L(α).
Note that we do in fact need the assumption that L is separable over k. For

example, take k = Fp(x, y), K = k(u, v) where u and v are independent transcen-
dentals related by the equation xup − yvp = 1, and L = k(x1/p). One can check
that k is algebraically closed in K. Since L is algebraic over k, L is free from K.
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Then in KL we have the equation

y =
xup − 1

vp
=

(
x1/pu− 1

v

)p

and KL ⊃ L(y1/p) ⊃ L.

Problem 3. Let k ⊂ E ⊂ K be extension fields. Show that

trdeg(K/k) = trdeg(K/E) + trdeg(E/k).

Show if {xi} is a transcendence base of E/k, and {yj} is a transcendence base of
K/E, then {xi, yj} is a transcendence base of K/k.

Solution. We prove the second statement; the first statement follows. Since {xi}
is a transcendence basis of E/k, by definition E is algebraic over k(x); the class of
algebraic extensions is distinguished (§V.1), so E(y) is algebraic over k(x, y) and
K is algebraic over E(y) so K is algebraic over k(x, y). Thus

trdeg(K/k) ≤ #{xi, yj},

and it suffices to show that the set {xi, yj} ⊂ K is algebraically independent, for
then

trdeg(K/k) ≥ #{xi, yj} = #{xi}+ #{yj} = trdeg(E/k) + trdeg(K/E).

Suppose that
f(xi, yj) =

∑
I,JaIJxIyJ = 0

is an algebraic dependence relation with aIJ ∈ k and xI , yJ monomials in the
xi, yj , respectively. Since yj are algebraically independent over E, viewing f as a
polynomial in the yj we see that f must be of the form

f(xi) =
∑

IaIx
I = 0;

but then again the xi are algebraically independent over k, so this polynomial is
identically zero.

Problem 4. Let K/k be a finitely generated extension, and let K ⊃ E ⊃ k be a
subextension. Show that E/k is finitely generated.

Solution. Let {xi} be a transcendence base for E/k and {yj} for K/E. By the
previous exercise, we see that each of these sets is finite and that K is algebraic
over k(x, y). Since K is finitely generated, K is finitely generated algebraic over
k(x, y), hence [K : k(x, y)] <∞.

K LL

k(x, y)

E LL

k(x)
sss

k

It suffices to show that E is finitely generated over k(x); we will show it is finite.
From Proposition 3.3, the field k(x, y) is linearly disjoint from E (since yj are
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algebraically independent). Thus if {um} ⊂ E is linearly independent over k(x) it
remains so over k(x, y), hence #{um} ≤ [K : k(x, y)] <∞ and the claim follows.

Problem 5. Let k be a field and k(x1, . . . , xn) = k(x) be a finite separable exten-
sion. Let u1, . . . , un be algebraically independent over k. Let

w = u1x1 + · · ·+ unxn.

Let k(u) = k(u1, . . . , un). Show that k(u)(w) = k(u)(x).

Solution. The inclusion k(u)(w) ⊂ k(u)(x) is clear.
Let K be the normal closure of k(x) in a fixed algebraic closure; by §V.4, the

extension K/k is also finite, separable. Let d = [k(x) : k], and let σi : k ↪→ K
be the d distinct embeddings of k into K. By Proposition 3.3 and Lemma 4.10,
the extensions k(u) (pure transcendental) and K (finite, separable, hence singly
generated) are linearly disjoint over k hence free, and [k(u)(x) : k(u)] = d. But we
have σi(w) 6= σj(w) for all i 6= j, since otherwise∑

m (σi(xm)− σj(xm))um = 0 ∈ K(u),

so by freeness σi(xm) = σj(xm) for all m, a contradiction. Therefore the minimal
polynomial of w is degree ≥ d [k(x)(u) : k(u)] ≥ d, which completes the proof.

Problem 6. Let k(x) = k(x1, . . . , xn) be a separable extension of transcendence
degree r ≥ 1. Let uij (with i = 1, . . . , r, j = 1, . . . , n) be algebraically independent
over k(x). Let

yi =
∑n

j=1uijxj .

Let k(u) = k(uij)i,j.
(a) Show that k(u)(x) is separable algebraic over k(u)(y1, . . . , yr) = k(u)(y).
(b) Show that there exists a polynomial P (u) ∈ k[u] having the following prop-

erty: Let (c) = (cij) be elements of k such that P (c) 6= 0. Let

y′i =
∑n

j=1cijxj .

Then k(x) is separable algebraic over k(y′).

Solution. We have the following diagram of fields:

k(u)(x)
rr OO

k(x)
NNN

N k(u)(y)
nnnn

k

The extension k(u)(x) of k(x) is separable since the uij are algebraically inde-
pendent over k(x). By assumption, k(x) is separable over k, so by Corollary 4.3,
k(u)(x) is separable over k. Therefore by Corollary 4.2, k(u)(x) is separable over
k(y).

By Problem 3, we have

trdeg(k(u)(x)/k) = trdeg(k(u)(x)/k(x)) + trdeg(k(x)/k) = rn + r

since the uij are algebraically independent. Therefore

rn + r = trdeg(k(u)(x)/k(u)(y)) + trdeg(k(u)(y)/k(u)) + trdeg(k(u)/k);
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since uij are algebraically independent over k(x) they are so over k, and we conclude
that trdeg(k(u)/k) = rn, and it suffices to prove that trdeg(k(u)(y)/k(u)) = r. If
not, there exists an algebraic dependence

∑
I aIy

I = 0 with the aI ∈ k(u) and yI

a monomial in the yj . By clearing denominators, we can write this as
∑

I bIu
I = 0

with bI ∈ k(y) and uI monomials in uj . Expanding this relation in the xi gives
a relation

∑
I b′Iu

I = 0 with bI ∈ k(x), a contradiction as the xi are algebraically
independent over k(u).

Part (b) follows from Corollary 2.3 and part (a).

Problem 7. Let k be a field and k[x1, . . . , xn] = R a finitely generated entire ring
over k with quotient field k(x). Let L be a finite extension of k(x). Let I be the
integral closure of R in L. Show that I is a finite R-module. [Hint: Use Noether
Normalization, and deal with the inseparability problem and the separable case in
two steps.]

Solution. By Proposition V.6.6, we have L ⊃ L0 ⊃ k(x) where L is purely insepa-
rable over L0 and L0 is separable over k(x). By Noether normalization (Theorem
VIII.2.1), there exist y1, . . . , yr ∈ R such that R is integral over k[y1, . . . , yr]. Let
k(y) = k(y1, . . . , yr) and k[y] = k[y1, . . . , yr]. We have the following diagram:

I L

I0 L0

R k(x)

k[y] k(y)

First, assume that R is integrally closed in k(x). Then the fact that I0 is a finite
R-module follows from Exercise VII.3. For the inseparable extension, it suffices
to treat the case where L = L0(t1/p) where t ∈ L0 \ Lp

0. Let α = a0 + · · · +
ap−1(t1/p)p−1 ∈ L be integral over L0; the minimal polynomial of α is Xp =
ap
0 + · · ·+ap−1t

p−1 so ap
i ∈ I0 for each i. Since I0 is integrally closed, ai ∈ I0, hence

I = I0[t1/p].
The general case now follows by applying the statement with L = K (since k[y]

is integrally closed in k(y)): if I is a finite k[y]-module and R is a finite k[y]-module,
then I is a finite R-module.


