MATH 250B: COMMUTATIVE ALGEBRA HOMEWORK \#9

JOHN VOIGHT

Problem R1. Show that -1 is a square in \mathbb{Z}_{5}.
Solution. Although one can prove this directly, it is worth noting the following general result:

Let $f(x) \in \mathbb{Z}[x]$, let p be a prime, and suppose that there exists $\alpha_{1} \in \mathbb{Z} / p \mathbb{Z}$ such that $f\left(\alpha_{1}\right) \equiv 0(\bmod p)$ and $f^{\prime}\left(\alpha_{1}\right) \not \equiv 0(\bmod p)$. Then there exists a unique root $\alpha \in \mathbb{Z}_{p}$ of f satisfying $\alpha \equiv \alpha_{1}(\bmod p)$.

Since $\mathbb{Z}_{p}=\lim _{\curvearrowleft} \mathbb{Z} / p^{n} \mathbb{Z}$, giving a root α of f in \mathbb{Z}_{p} is equivalent to giving for each $n \geq 1$ a root $\alpha_{n} \in \mathbb{Z} / p^{n} \mathbb{Z}$ of f such that $\alpha_{n+1} \equiv \alpha_{n}\left(\bmod p^{n}\right)$: then $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$ is a root of f in \mathbb{Z}_{p}.

We prove the existence of α_{n} by induction. We are given $\alpha_{1} \in \mathbb{Z} / p \mathbb{Z}$. Given α_{n}, we lift it to $\alpha_{n+1}=\alpha_{n}+t p^{n} \in \mathbb{Z} / p^{n+1} \mathbb{Z}$ as follows: since

$$
f\left(\alpha_{n+1}\right)=f\left(\alpha_{n}+t p^{n}\right) \equiv f\left(\alpha_{n}\right)+t p^{n} f^{\prime}\left(\alpha_{n}\right) \quad\left(\bmod p^{n+1}\right)
$$

by Taylor expansion, and $f\left(\alpha_{n}\right) \equiv 0\left(\bmod p^{n}\right)$, it is enough to solve

$$
f^{\prime}\left(\alpha_{n}\right) t \equiv-f\left(\alpha_{n}\right) / p^{n} \quad(\bmod p)
$$

for t which is possible (uniquely) because $f^{\prime}\left(\alpha_{n}\right) \equiv f^{\prime}\left(\alpha_{1}\right) \not \equiv 0(\bmod p)$.
In our case, we may take $\alpha_{1}=2$ since $f^{\prime}(2)=4(\bmod 5)$.

Problem R2. Let E be the set consisting of all nonnegative integers, together with an extra element ∞. A supernatural number is a formal product $\prod_{p} p^{e_{p}}$ where the product runs over all primes p and where the exponents e_{p} are elements of E. If m is a supernatural number, let $m \widehat{\mathbb{Z}}$ be the intersection of the groups $n \widehat{\mathbb{Z}}$, taken over positive integers n that divide m.

Show that the set of closed subgroups of $\widehat{\mathbb{Z}}$ corresponds bijectively with the set of supernatural numbers under the map $m \mapsto m \widehat{\mathbb{Z}}$.

Solution. Let m be a supernatural number. We note that $m \widehat{\mathbb{Z}}$ is indeed a closed subgroup of $\widehat{\mathbb{Z}}$ since it is the intersection of the open (by definition) hence closed subgroups $n \widehat{\mathbb{Z}}$ for $n \in \mathbb{Z}$.

For each prime p and $n \in \mathbb{Z}_{>0}$, we have the projection map $\widehat{\mathbb{Z}} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$. These maps are continuous (by definition) and are compatible in the sense that if $n^{\prime} \geq n$,

[^0]the diagram

commutes. By the property of projective limits, we obtain a continuous map $\widehat{\mathbb{Z}} \rightarrow$ ${\underset{\zeta}{l}}^{\lim _{n}} \mathbb{Z} / p^{n} \mathbb{Z}=\mathbb{Z}_{p}$. (In fact, the map $\widehat{\mathbb{Z}} \rightarrow \prod_{p} \mathbb{Z}_{p}$ is an isomorphism of topological rings if the product is given the product topology.)

From this we see that the map $m \mapsto m \widehat{\mathbb{Z}}$ is injective: if $m \neq m^{\prime}$, then there exists a prime p such that $e_{p} \neq e_{p}^{\prime}\left(\right.$ where $\left.m^{\prime}=\prod_{p} p^{e_{p}^{\prime}}\right)$, hence the images of $m \widehat{\mathbb{Z}}$ and $m^{\prime} \widehat{\mathbb{Z}}$ in \mathbb{Z}_{p} are different.

Let H be a closed subgroup of $\widehat{\mathbb{Z}}$. Since $\widehat{\mathbb{Z}}$ is compact (it is a closed subset of $\prod_{m} \mathbb{Z} / m \mathbb{Z}$ in the product topology and each factor is discrete), the image of H in \mathbb{Z}_{p} is compact; since \mathbb{Z}_{p} is Hausdorff (it is a subset of $\prod_{n} \mathbb{Z} / p^{n} \mathbb{Z}$, each factor again discrete), this image is closed. Let e_{p} be the largest element of E such that $H \subset p^{e_{p}} \mathbb{Z}_{p}$ (we take $e_{p}=\infty$ e.g. if $H=\{0\}$). This gives a map from the set of closed subgroups of $\widehat{\mathbb{Z}}$ to the set of supernatural numbers by $H \mapsto \prod_{p} p^{e_{p}(H)}$. It is now easy to see that

$$
m \widehat{\mathbb{Z}} \mapsto \prod_{p} p^{e_{p}(m \widehat{\mathbb{Z}})}=m
$$

under this map; therefore the map $m \mapsto m \widehat{\mathbb{Z}}$ has a right inverse, so it is surjective as well.

Problem R3. Let K and L be extensions of a field k inside a large field Ω (as in Chapter VIII, §3). Is it true that K and L are linearly disjoint over k if and only if the natural map $K \otimes_{k} L \rightarrow \Omega$ is injective?
Solution. Yes, this statement is true. First suppose K and L are linearly disjoint. Let

$$
\alpha=\sum_{i} x_{i} \otimes y_{i} \in K \otimes_{k} L
$$

be any element. By k-bilinearity of the tensor product, we may assume that the x_{i} are linearly independent over k, for e.g. if $x_{j}=\sum_{i} \alpha_{i} x_{i}$, then

$$
x_{j} \otimes y_{j}=\sum_{i} x_{i} \otimes\left(\alpha_{i} y_{j}\right)
$$

Then since K and L are linearly disjoint, the x_{i} are linearly independent over L, so if $\alpha \mapsto 0=\sum_{i} x_{i} y_{i}$, we have $y_{i}=0$ for all i, hence $\alpha=0$.

Conversely, let $x_{1}, \ldots, x_{n} \in K$ be linearly independent over k. Suppose that there exist $y_{i} \in L$ such that $\sum_{i} x_{i} y_{i}=0 \in \Omega$; then $\sum_{i} x_{i} \otimes y_{i} \mapsto 0$, so by injectivity, we have $\sum_{i} x_{i} \otimes y_{i}=0$. Since $x_{i} \in K$ are linearly independent over k, the elements $x_{i} \otimes 1 \in K \otimes L$ are linearly independent over L, a contradiction.

Problem R4. At the beginning of the proof of Theorem VIII.4.13, Lang says, "From the hypotheses, we deduce that K is free from the algebraic closure L^{a} of L over k." How do we deduce this?

Solution. Let $x_{1}, \ldots, x_{n} \in K$ be algebraically independent over k, in other words, $\operatorname{trdeg}(k(x) / k)=n$. We know that K is free from L over k, so $\operatorname{trdeg}(L(x) / L)=n$. We have the following diagram of fields:

By problem 3 (proven below, without using this result),

$$
\operatorname{trdeg}(\bar{L}(x) / L)=\operatorname{trdeg}(\bar{L}(x) / L(x))+\operatorname{trdeg}(L(x) / L)=0+n=n
$$

since $\operatorname{trdeg}(\bar{L}(x) / \underline{L}(x)) \leq \operatorname{trdeg}(\bar{L} / L)=0$. So x_{1}, \ldots, x_{n} are also algebraically independent over \bar{L}.

Problem 2. A subfield k of a field K is said to be algebraically closed in K if every element of K which is algebraic over k is contained in k. Prove: If k is algebraically closed in K, and K, L are free over k, and L is separable over k or K is separable over k, then L is algebraically closed in $K L$.

Solution. If K is separable over k, then K / k is a regular extension, so by Theorem 4.13, $K L / L$ is regular and in particular, L is algebraically closed in L.

So we suppose that L is separable over k. We may assume that L is finitely generated over k. Let x_{1}, \ldots, x_{n} be a separating transcendence base for the extension L over k, so that L is a finite separable extension of $k(x)=k\left(x_{1}, \ldots, x_{n}\right)$. Since the x_{i} are algebraically independent over k and L is free from K, we know that k is algebraically closed in $K(x)$, so $k(x)$ is algebraically closed in $K(x)$. We therefore reduce to the case where L is a finite separable extension of k.

Suppose that $\alpha \in K L$ is algebraic over L. By the proof of Lemma 4.10, the minimal polynomial of α over k remains irreducible over K, and hence is minimal. But since L is separable over k, we have by Corollary 4.5 that $K L$ is separable over K, therefore the minimal polynomial of α must be separable over K, so α is in fact separable over k. Therefore $L(\alpha)$ is finite and separable, so it is primitively generated; by Lemma 4.10 we have

$$
[L(\alpha): k]=[K L(\alpha): K]=[K L: K]=[L: k]
$$

so $L=L(\alpha)$.
Note that we do in fact need the assumption that L is separable over k. For example, take $k=\mathbb{F}_{p}(x, y), K=k(u, v)$ where u and v are independent transcendentals related by the equation $x u^{p}-y v^{p}=1$, and $L=k\left(x^{1 / p}\right)$. One can check that k is algebraically closed in K. Since L is algebraic over k, L is free from K.

Then in $K L$ we have the equation

$$
y=\frac{x u^{p}-1}{v^{p}}=\left(\frac{x^{1 / p} u-1}{v}\right)^{p}
$$

and $K L \supset L\left(y^{1 / p}\right) \supset L$.

Problem 3. Let $k \subset E \subset K$ be extension fields. Show that

$$
\operatorname{trdeg}(K / k)=\operatorname{trdeg}(K / E)+\operatorname{trdeg}(E / k)
$$

Show if $\left\{x_{i}\right\}$ is a transcendence base of E / k, and $\left\{y_{j}\right\}$ is a transcendence base of K / E, then $\left\{x_{i}, y_{j}\right\}$ is a transcendence base of K / k.

Solution. We prove the second statement; the first statement follows. Since $\left\{x_{i}\right\}$ is a transcendence basis of E / k, by definition E is algebraic over $k(x)$; the class of algebraic extensions is distinguished (§V.1), so $E(y)$ is algebraic over $k(x, y)$ and K is algebraic over $E(y)$ so K is algebraic over $k(x, y)$. Thus

$$
\operatorname{trdeg}(K / k) \leq \#\left\{x_{i}, y_{j}\right\}
$$

and it suffices to show that the set $\left\{x_{i}, y_{j}\right\} \subset K$ is algebraically independent, for then

$$
\operatorname{trdeg}(K / k) \geq \#\left\{x_{i}, y_{j}\right\}=\#\left\{x_{i}\right\}+\#\left\{y_{j}\right\}=\operatorname{trdeg}(E / k)+\operatorname{trdeg}(K / E)
$$

Suppose that

$$
f\left(x_{i}, y_{j}\right)=\sum_{I, J} a_{I J} x^{I} y^{J}=0
$$

is an algebraic dependence relation with $a_{I J} \in k$ and x^{I}, y^{J} monomials in the x_{i}, y_{j}, respectively. Since y_{j} are algebraically independent over E, viewing f as a polynomial in the y_{j} we see that f must be of the form

$$
f\left(x_{i}\right)=\sum_{I} a_{I} x^{I}=0
$$

but then again the x_{i} are algebraically independent over k, so this polynomial is identically zero.

Problem 4. Let K / k be a finitely generated extension, and let $K \supset E \supset k$ be a subextension. Show that E / k is finitely generated.

Solution. Let $\left\{x_{i}\right\}$ be a transcendence base for E / k and $\left\{y_{j}\right\}$ for K / E. By the previous exercise, we see that each of these sets is finite and that K is algebraic over $k(x, y)$. Since K is finitely generated, K is finitely generated algebraic over $k(x, y)$, hence $[K: k(x, y)]<\infty$.

It suffices to show that E is finitely generated over $k(x)$; we will show it is finite. From Proposition 3.3, the field $k(x, y)$ is linearly disjoint from E (since y_{j} are
algebraically independent). Thus if $\left\{u_{m}\right\} \subset E$ is linearly independent over $k(x)$ it remains so over $k(x, y)$, hence $\#\left\{u_{m}\right\} \leq[K: k(x, y)]<\infty$ and the claim follows.

Problem 5. Let k be a field and $k\left(x_{1}, \ldots, x_{n}\right)=k(x)$ be a finite separable extension. Let u_{1}, \ldots, u_{n} be algebraically independent over k. Let

$$
w=u_{1} x_{1}+\cdots+u_{n} x_{n}
$$

Let $k(u)=k\left(u_{1}, \ldots, u_{n}\right)$. Show that $k(u)(w)=k(u)(x)$.
Solution. The inclusion $k(u)(w) \subset k(u)(x)$ is clear.
Let K be the normal closure of $k(x)$ in a fixed algebraic closure; by $\S \mathrm{V} .4$, the extension K / k is also finite, separable. Let $d=[k(x): k]$, and let $\sigma_{i}: k \hookrightarrow K$ be the d distinct embeddings of k into K. By Proposition 3.3 and Lemma 4.10, the extensions $k(u)$ (pure transcendental) and K (finite, separable, hence singly generated) are linearly disjoint over k hence free, and $[k(u)(x): k(u)]=d$. But we have $\sigma_{i}(w) \neq \sigma_{j}(w)$ for all $i \neq j$, since otherwise

$$
\sum_{m}\left(\sigma_{i}\left(x_{m}\right)-\sigma_{j}\left(x_{m}\right)\right) u_{m}=0 \in K(u)
$$

so by freeness $\sigma_{i}\left(x_{m}\right)=\sigma_{j}\left(x_{m}\right)$ for all m, a contradiction. Therefore the minimal polynomial of w is degree $\geq d[k(x)(u): k(u)] \geq d$, which completes the proof.

Problem 6. Let $k(x)=k\left(x_{1}, \ldots, x_{n}\right)$ be a separable extension of transcendence degree $r \geq 1$. Let $u_{i j}$ (with $i=1, \ldots, r, j=1, \ldots, n$) be algebraically independent over $k(x)$. Let

$$
y_{i}=\sum_{j=1}^{n} u_{i j} x_{j} .
$$

Let $k(u)=k\left(u_{i j}\right)_{i, j}$.
(a) Show that $k(u)(x)$ is separable algebraic over $k(u)\left(y_{1}, \ldots, y_{r}\right)=k(u)(y)$.
(b) Show that there exists a polynomial $P(u) \in k[u]$ having the following property: Let $(c)=\left(c_{i j}\right)$ be elements of k such that $P(c) \neq 0$. Let

$$
y_{i}^{\prime}=\sum_{j=1}^{n} c_{i j} x_{j} .
$$

Then $k(x)$ is separable algebraic over $k\left(y^{\prime}\right)$.
Solution. We have the following diagram of fields:

The extension $k(u)(x)$ of $k(x)$ is separable since the $u_{i j}$ are algebraically independent over $k(x)$. By assumption, $k(x)$ is separable over k, so by Corollary 4.3, $k(u)(x)$ is separable over k. Therefore by Corollary $4.2, k(u)(x)$ is separable over $k(y)$.

By Problem 3, we have

$$
\operatorname{trdeg}(k(u)(x) / k)=\operatorname{trdeg}(k(u)(x) / k(x))+\operatorname{trdeg}(k(x) / k)=r n+r
$$

since the $u_{i j}$ are algebraically independent. Therefore

$$
r n+r=\operatorname{trdeg}(k(u)(x) / k(u)(y))+\operatorname{trdeg}(k(u)(y) / k(u))+\operatorname{trdeg}(k(u) / k)
$$

since $u_{i j}$ are algebraically independent over $k(x)$ they are so over k, and we conclude that $\operatorname{trdeg}(k(u) / k)=r n$, and it suffices to prove that $\operatorname{trdeg}(k(u)(y) / k(u))=r$. If not, there exists an algebraic dependence $\sum_{I} a_{I} y^{I}=0$ with the $a_{I} \in k(u)$ and y^{I} a monomial in the y_{j}. By clearing denominators, we can write this as $\sum_{I} b_{I} u^{I}=0$ with $b_{I} \in k(y)$ and u^{I} monomials in u_{j}. Expanding this relation in the x_{i} gives a relation $\sum_{I} b_{I}^{\prime} u^{I}=0$ with $b_{I} \in k(x)$, a contradiction as the x_{i} are algebraically independent over $k(u)$.

Part (b) follows from Corollary 2.3 and part (a).

Problem 7. Let k be a field and $k\left[x_{1}, \ldots, x_{n}\right]=R$ a finitely generated entire ring over k with quotient field $k(x)$. Let L be a finite extension of $k(x)$. Let I be the integral closure of R in L. Show that I is a finite R-module. [Hint: Use Noether Normalization, and deal with the inseparability problem and the separable case in two steps.]
Solution. By Proposition V.6.6, we have $L \supset L_{0} \supset k(x)$ where L is purely inseparable over L_{0} and L_{0} is separable over $k(x)$. By Noether normalization (Theorem VIII.2.1), there exist $y_{1}, \ldots, y_{r} \in R$ such that R is integral over $k\left[y_{1}, \ldots, y_{r}\right]$. Let $k(y)=k\left(y_{1}, \ldots, y_{r}\right)$ and $k[y]=k\left[y_{1}, \ldots, y_{r}\right]$. We have the following diagram:

I	L
1	1
I_{0}	L_{0}
$।$	1
R	$k(x)$
1	1
$k[y]$	$k(y)$

First, assume that R is integrally closed in $k(x)$. Then the fact that I_{0} is a finite R-module follows from Exercise VII.3. For the inseparable extension, it suffices to treat the case where $L=L_{0}\left(t^{1 / p}\right)$ where $t \in L_{0} \backslash L_{0}^{p}$. Let $\alpha=a_{0}+\cdots+$ $a_{p-1}\left(t^{1 / p}\right)^{p-1} \in L$ be integral over L_{0}; the minimal polynomial of α is $X^{p}=$ $a_{0}^{p}+\cdots+a_{p-1} t^{p-1}$ so $a_{i}^{p} \in I_{0}$ for each i. Since I_{0} is integrally closed, $a_{i} \in I_{0}$, hence $I=I_{0}\left[t^{1 / p}\right]$.

The general case now follows by applying the statement with $L=K$ (since $k[y]$ is integrally closed in $k(y))$: if I is a finite $k[y]$-module and R is a finite $k[y]$-module, then I is a finite R-module.

[^0]: Date: May 16, 2003.
 R1-R4, VIII: 2-7.

