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Fill in the blanks.

Let F be a field. An F -module V is also known as a F -vector space

over F , and an F -module homomorphism φ : V → W is called a

.

Let V be a vector space over F . Let v1, . . . , vn ∈ V . A linear

combination of v1, . . . , vn is

The set of all vectors w which are linear combinations of v1, . . . , vn

forms a W ⊂ V , and we say that W is

by v1, . . . , vn.

A linear relation among vectors v1, . . . , vn is a linear combination

which is equal to zero, i.e.,

The vectors v1, . . . , vn are called if there is

no nonzero linear relation among the vectors, i.e., if c1v1 + · · ·+ cnvn =

0 then ; otherwise

v1, . . . , vn are called . By convention, the
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empty set is considered to be , and the

span of the empty set is . Two vectors

v1, v2 have no nonzero linear relation if and only if either

or .

An ordered set B = {v1, . . . , vn} of vectors which is linearly inde-

pendent and spans V is called a of V ; for

example, for F n = {(a1, . . . , an) : ai ∈ F} we may take

Lemma. The set B is a basis for V if and only if every w ∈ V can be

written uniquely as a

Proposition. Let L = {v1, . . . , vn} ⊂ V be a linearly independent

ordered set, and let v ∈ V . Then the ordered set {v1, . . . , vn, v} is

linearly independent if and only if

Proposition. For any finite set S which spans V , there exists a subset

B ⊂ S which is a basis for V .

Proof. Suppose that S = {v1, . . . , vn} and that S is not linearly inde-

pendent. Then
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�

Lemma. Let V be a vector space with a finite basis. Then any spanning

set of V contains a basis, and any

set L can be extended by adding elements of V to get a basis.

Corollary. Suppose V has a finite basis B with #B = n. Then any set

of linearly independent vectors has at most elements,

and any spanning set has elements.

Proof. Let L be a linearly independent set of vectors. By the lemma,

�

Corollary. If V has a finite basis then any two bases of V have the

same cardinality.

Proof.

�
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Let V be a vector space with a finite basis. Then the dimension

of V is defined to be

and is denoted dimF V , and V is said to be

over F .

If F is a finite field with #F = q, then a vector space of dimension

n over F has elements.

Theorem. Let V be a vector space of dimension n. Then V ∼= F n.

In particular, any two vector spaces of the same finite dimension are

isomorphic.

Proof. Let v1, . . . , vn be a basis for V . Define the map

φ : F n → V

φ(a1, . . . , an) = a1v1 + · · ·+ anvn.

�

Theorem. Let V be a finite-dimensional vector space over F and let

W be a subspace of V . Then the quotient V/W is a vector space with

dim(V/W ) = ,
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Proof. Since V is finite-dimensional, so is W because

. So let W have di-

mension m and let w1, . . . , wm be a basis for W . We extend this basis

to a basis w1, . . . , wm, vm+1, . . . , vn of V . Then the projection map V →

V/W maps each wi to and therefore has image spanned

by vm+1+W, . . . , vn+W ; these vectors are linearly independent because

. So

dim(V/W ) = . �

Corollary. Let φ : V → W be a linear transformation. Then

dimV = dim kerφ+ dim img φ.

We also say that kerφ is the of φ and

dim kerφ is the . The dimension of img φ =

φ(V ) is called the .

Corollary. Let φ : V → W be a linear transformation of vector spaces

of the same finite dimension n. Then φ is an isomorphism if and only

if φ is injective if and only if φ is surjective.

Proof.

�


