Math 112: Geometric Group Theory Fall 2015 - Assignment 4

Return date: Tuesday 10/13/15

keywords: geodesics in trees, quotients of graphs, products of graphs

exercise 9. Let $T_3 \subset \mathbb{R}^2$ be a regular triangle. The dihedral group D_3 is the subgroup of isometries of \mathbb{R}^2 that maps T_3 onto itself. This group consists of 3 rotations and 3 reflections.

- a) Draw a Cayley graph $\Gamma := \Gamma(D_3, \{r, s\})$ of D_3 with a rotation r and a reflection s as a generator.
- b) Draw the quotient graphs $\Gamma/\langle r \rangle$ and $\Gamma/\langle s \rangle$ and use **Theorem 2.7** from Chapter III to decide which of the two subgroups $\langle r \rangle$ and $\langle s \rangle$ is not a normal subgroup.

exercise 10. Let $T = (V, E, \delta)$ be a tree, such that $val(v) < \infty$ for all $v \in V$ and let (T^{geom}, d_T) be its geometric realization with the corresponding path metric d_T . Show that

- a) for all $x, y \in T^{geom}$ there exists a sequence $\gamma_{x,y} \in S(x,y)$, such that $\ell(\gamma_{x,y}) = d_T(x,y)$.
- b) if $\gamma_{x,y}, \gamma'_{x,y} \in S(x, y)$ are two sequences, such that $\ell(\gamma_{x,y}) = \ell(\gamma'_{x,y}) = d_T(x, y)$ then the two images of the segments joining the respective points of the sequences coincide pointwise in T^{geom} .

exercise 11. Let $\Gamma_1 = (V_1, E_1, \delta_1)$ und $\Gamma_2 = (V_2, E_2, \delta_2)$ be two connected, simple graphs without loops and countably many vertices and edges. The product graph $\Gamma_1 \times \Gamma_2 = (V, E, \delta)$ is defined in the following way:

The set of vertices V is $V_1 \times V_2$.

The edges E are defined in the following way:

 (v_1, v_2) is connected to (w_1, w_2) by an edge $e \in E$, i.e. $(v_1, v_2) \sim (w_1, w_2) \Leftrightarrow$ $(v_1 = w_1 \text{ in } \Gamma_1 \text{ and } v_2 \sim w_2 \text{ in } \Gamma_2)$ or $(v_2 = w_2 \text{ in } \Gamma_2 \text{ and } v_1 \sim w_1 \text{ in } \Gamma_1)$.

- a) Show that $\operatorname{Aut}(\Gamma_1) \times \operatorname{Aut}(\Gamma_2)$ can be embedded into $\operatorname{Aut}(\Gamma_1 \times \Gamma_2)$.
- b) Is $\operatorname{Aut}(\Gamma_1 \times \Gamma_2) \cong \operatorname{Aut}(\Gamma_1) \times \operatorname{Aut}(\Gamma_2)$?
- c) For $i \in \{1, 2\}$ let G_i be a group and S_i be a generating set, such that $S_i \cap S_i^{-1} = \emptyset$. Let $\Gamma_i = \Gamma_i(G_i, S_i)$ be the corresponding Cayley graph. Let $G_1 \times G_2$ be the product group and $(S_1 \times \{1_{G_2}\}) \cup (\{1_{G_1}\} \times S_2)$ be its generating set. Is

$$\Gamma_1 \times \Gamma_2 \cong \Gamma(G_1 \times G_2, (S_1 \times \{1_{G_2}\}) \cup (\{1_{G_1}\} \times S_2))?$$